Numerical investigations on the unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of the Global Power and Propulsion Society Pub Date : 2023-01-05 DOI:10.33737/jgpps/157176
Shijie Jiang, Zhigang Li, Jun Li, Liming Song
{"title":"Numerical investigations on the unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip","authors":"Shijie Jiang, Zhigang Li, Jun Li, Liming Song","doi":"10.33737/jgpps/157176","DOIUrl":null,"url":null,"abstract":"The unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip was numerically investigated using three-dimensional Unsteady Reynolds-Averaged Naiver-Stokes (URANS) and standard k-ω turbulence model. The numerical simulated heat transfer coefficients of the turbine blade tip were well agreement with the experimental data. The accuracy of the numerical method was validated. The steady and unsteady leakage flow and heat transfer coefficient of the turbine blade squealer tip with and without film cooling was conducted. The unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip with film cooling design at three different blow ratios was numerically investigated. The obtained results show that the corner vortex and scraping vortex near the pressure side shows periodic fluctuation along the separation line of the leakage flow under the function of the pressure difference between the suction and pressure side of the blade tip, as well as the upstream vane unsteady wake flow. This unsteady flow behavior results in the fluctuation of the high heat transfer coefficients at the blade tip. The film cooling design along the camber line can effectively reduce the thermal load of the turbine blade squealer tip by comparison to without film cooling case. The time-averaged heat transfer coefficients of the turbine blade squealer tip reduce 9.0%, 12.4% and 13.2% at blowing ratio of .0.5, 1.0 and 1.5 comparison to without film cooling design in respective. The present work can provide the reference of the film cooling design for the turbine blade squealer tip.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/157176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip was numerically investigated using three-dimensional Unsteady Reynolds-Averaged Naiver-Stokes (URANS) and standard k-ω turbulence model. The numerical simulated heat transfer coefficients of the turbine blade tip were well agreement with the experimental data. The accuracy of the numerical method was validated. The steady and unsteady leakage flow and heat transfer coefficient of the turbine blade squealer tip with and without film cooling was conducted. The unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip with film cooling design at three different blow ratios was numerically investigated. The obtained results show that the corner vortex and scraping vortex near the pressure side shows periodic fluctuation along the separation line of the leakage flow under the function of the pressure difference between the suction and pressure side of the blade tip, as well as the upstream vane unsteady wake flow. This unsteady flow behavior results in the fluctuation of the high heat transfer coefficients at the blade tip. The film cooling design along the camber line can effectively reduce the thermal load of the turbine blade squealer tip by comparison to without film cooling case. The time-averaged heat transfer coefficients of the turbine blade squealer tip reduce 9.0%, 12.4% and 13.2% at blowing ratio of .0.5, 1.0 and 1.5 comparison to without film cooling design in respective. The present work can provide the reference of the film cooling design for the turbine blade squealer tip.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涡轮叶片尖部非定常泄漏流动及换热特性数值研究
采用三维非定常reynolds - average naver - stokes (URANS)和标准k-ω湍流模型,对涡轮叶片尖部的非定常泄漏流动和换热特性进行了数值研究。数值模拟的涡轮叶尖换热系数与实验数据吻合较好。验证了数值方法的准确性。研究了采用气膜冷却和不采用气膜冷却的涡轮叶片尖部的定常和非定常泄漏流量和换热系数。对采用气膜冷却设计的涡轮叶片尖部在三种不同吹风比下的非定常泄漏流动和换热特性进行了数值研究。得到的结果表明,在叶尖吸力与压力侧压差以及上游叶片非定常尾流的作用下,压力侧附近的角涡和刮涡沿泄漏流分离线呈现周期性波动。这种非定常流动行为导致了叶顶高换热系数的波动。与无气膜冷却情况相比,沿弧度线的气膜冷却设计能有效降低涡轮叶片尖尖的热负荷。在吹气比为0.0.5、1.0和1.5时,涡轮叶片尖部的时间平均换热系数分别比无气膜冷却设计降低9.0%、12.4%和13.2%。本文的工作可为涡轮叶片尖部的气膜冷却设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
期刊最新文献
Thermodynamic performance study of simplified precooled engine cycle with coupling power output Direct multi-fidelity integration of 3D CFD models in a gas turbine with numerical zooming method A novel performance adaptation method for aero-engine matching over a wide operating range Swirling flow field reconstruction and cooling performance analysis based on experimental observations using physics-informed neural networks Flow physics during durge of an axial-centrifugal compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1