{"title":"Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris","authors":"Kaushal Jani","doi":"10.1108/ijius-01-2023-0002","DOIUrl":null,"url":null,"abstract":"Purpose This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither supervised machine learning nor manual engineering are used in this work. Instead, the OTV educates itself without instruction from humans or labeling. Beyond its link to stopping distance and lateral mobility, choosing the right speed is crucial. One of the biggest problems with autonomous operations is accurate perception. Obstacle avoidance is typically the focus of perceptive technology. The vehicle's shock is nonetheless controlled by the terrain's roughness at high speeds. The precision needed to recognize difficult terrain is far higher than the accuracy needed to avoid obstacles. Design/methodology/approach Robots that can drive unattended in an unfamiliar environment should be used for the Orbital Transfer Vehicle (OTV) for the clearance of space debris. In recent years, OTV research has attracted more attention and revealed several insights for robot systems in various applications. Improvements to advanced assistance systems like lane departure warning and intelligent speed adaptation systems are eagerly sought after by the industry, particularly space enterprises. OTV serves as a research basis for advancements in machine learning, computer vision, sensor data fusion, path planning, decision making and intelligent autonomous behavior from a computer science perspective. In the framework of autonomous OTV, this study offers a few perceptual technologies for autonomous driving in this study. Findings One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV. Originality/value One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-01-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither supervised machine learning nor manual engineering are used in this work. Instead, the OTV educates itself without instruction from humans or labeling. Beyond its link to stopping distance and lateral mobility, choosing the right speed is crucial. One of the biggest problems with autonomous operations is accurate perception. Obstacle avoidance is typically the focus of perceptive technology. The vehicle's shock is nonetheless controlled by the terrain's roughness at high speeds. The precision needed to recognize difficult terrain is far higher than the accuracy needed to avoid obstacles. Design/methodology/approach Robots that can drive unattended in an unfamiliar environment should be used for the Orbital Transfer Vehicle (OTV) for the clearance of space debris. In recent years, OTV research has attracted more attention and revealed several insights for robot systems in various applications. Improvements to advanced assistance systems like lane departure warning and intelligent speed adaptation systems are eagerly sought after by the industry, particularly space enterprises. OTV serves as a research basis for advancements in machine learning, computer vision, sensor data fusion, path planning, decision making and intelligent autonomous behavior from a computer science perspective. In the framework of autonomous OTV, this study offers a few perceptual technologies for autonomous driving in this study. Findings One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV. Originality/value One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.