Curcumin delivery nanoparticles based on Maillard reaction of Haematococcus pluvialis protein/galactose for alleviating acute alcoholic liver damage

IF 5.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Science and Human Wellness Pub Date : 2024-09-01 DOI:10.26599/FSHW.2022.9250211
{"title":"Curcumin delivery nanoparticles based on Maillard reaction of Haematococcus pluvialis protein/galactose for alleviating acute alcoholic liver damage","authors":"","doi":"10.26599/FSHW.2022.9250211","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to investigate the feasibility of Maillard reaction products of <em>Haematococcus pluvialis</em> protein and galactose (HPP-GAL) for improving the bioactivities of curcumin (CUR) for alleviating alcoholic liver damage. CUR was embedded into HPP-GAL nanoparticles by the self-assembly of hydrogen bonding and hydrophobic interaction with the particle size around 200 nm. HPP-GAL enhanced the encapsulation efficiency and loading amount of CUR with the value of (89.21 ± 0.33)% and (0.500 ± 0.004)%, respectively. The stabilities of CUR under strong acid, salt ion stability and ultraviolet irradiation conditions were improved by the encapsulation. HPP-GAL-CUR nanoparticles exhibited excellent concentration-dependent <em>in vitro</em> antioxidant activities including DPPH and ABTS scavenging rates, and better protective effect on CUR against gastric acid environment as well as longer release of CUR in simulated intestinal fluid. In addition, the HPP-GAL-CUR delivery system possessed liver targeting property due to the existence of GAL, which could effectively alleviate the alcohol-induced liver damage and the inflammation indexes by inhibiting the oxidative stress. Therefore, HPP-GAL-CUR nanoparticles might be a potential candidate system for the prevention of alcoholic liver damage in the future.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2629-2641"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024002088","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to investigate the feasibility of Maillard reaction products of Haematococcus pluvialis protein and galactose (HPP-GAL) for improving the bioactivities of curcumin (CUR) for alleviating alcoholic liver damage. CUR was embedded into HPP-GAL nanoparticles by the self-assembly of hydrogen bonding and hydrophobic interaction with the particle size around 200 nm. HPP-GAL enhanced the encapsulation efficiency and loading amount of CUR with the value of (89.21 ± 0.33)% and (0.500 ± 0.004)%, respectively. The stabilities of CUR under strong acid, salt ion stability and ultraviolet irradiation conditions were improved by the encapsulation. HPP-GAL-CUR nanoparticles exhibited excellent concentration-dependent in vitro antioxidant activities including DPPH and ABTS scavenging rates, and better protective effect on CUR against gastric acid environment as well as longer release of CUR in simulated intestinal fluid. In addition, the HPP-GAL-CUR delivery system possessed liver targeting property due to the existence of GAL, which could effectively alleviate the alcohol-induced liver damage and the inflammation indexes by inhibiting the oxidative stress. Therefore, HPP-GAL-CUR nanoparticles might be a potential candidate system for the prevention of alcoholic liver damage in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于血球菌蛋白/半乳糖的马氏反应的姜黄素递送纳米颗粒,用于缓解急性酒精性肝损伤
本研究旨在探讨血球菌蛋白与半乳糖的马氏反应产物(HPP-GAL)改善姜黄素(CUR)生物活性以减轻酒精性肝损伤的可行性。通过氢键和疏水作用的自组装,姜黄素被嵌入 HPP-GAL 纳米粒子,粒径约为 200 nm。HPP-GAL提高了CUR的包封效率和负载量,其值分别为(89.21 ± 0.33)%和(0.500 ± 0.004)%。封装后的 CUR 在强酸、盐离子稳定性和紫外线照射条件下的稳定性都得到了改善。HPP-GAL-CUR 纳米粒子具有优异的浓度依赖性体外抗氧化活性,包括 DPPH 和 ABTS 清除率,对 CUR 在胃酸环境中具有更好的保护作用,在模拟肠液中的释放时间更长。此外,由于 GAL 的存在,HPP-GAL-CUR 给药系统具有肝脏靶向性,可通过抑制氧化应激有效缓解酒精引起的肝损伤和炎症指标。因此,HPP-GAL-CUR纳米颗粒可能是未来预防酒精性肝损伤的潜在候选系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Science and Human Wellness
Food Science and Human Wellness Agricultural and Biological Sciences-Food Science
CiteScore
8.30
自引率
5.70%
发文量
80
审稿时长
28 days
期刊介绍: Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.
期刊最新文献
Fufang E’jiao Jiang’s effect on immunity, hematopoiesis, and angiogenesis via a systematic “compound-effect-target” analysis Carbonic anhydrase 2 mediates anti-obesity effects of black tea as thermogenic activator Adjuvant postbiotic administration improves dental caries prognosis by restoring the oral microbiota Strain-specific effect of Streptococcus thermophilus consumption on host physiology Saikosaponin D improves non-alcoholic fatty liver disease via gut microbiota-bile acid metabolism pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1