Holdout predictive checks for Bayesian model criticism

IF 3.1 1区 数学 Q1 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series B-Statistical Methodology Pub Date : 2023-09-15 DOI:10.1093/jrsssb/qkad105
Gemma E Moran, David M Blei, Rajesh Ranganath
{"title":"Holdout predictive checks for Bayesian model criticism","authors":"Gemma E Moran, David M Blei, Rajesh Ranganath","doi":"10.1093/jrsssb/qkad105","DOIUrl":null,"url":null,"abstract":"Abstract Bayesian modelling helps applied researchers to articulate assumptions about their data and develop models tailored for specific applications. Thanks to good methods for approximate posterior inference, researchers can now easily build, use, and revise complicated Bayesian models for large and rich data. These capabilities, however, bring into focus the problem of model criticism. Researchers need tools to diagnose the fitness of their models, to understand where they fall short, and to guide their revision. In this paper, we develop a new method for Bayesian model criticism, the holdout predictive check (HPC). Holdout predictive check are built on posterior predictive check (PPC), a seminal method that checks a model by assessing the posterior predictive distribution on the observed data. However, PPC use the data twice—both to calculate the posterior predictive and to evaluate it—which can lead to uncalibrated p-values. Holdout predictive check, in contrast, compare the posterior predictive distribution to a draw from the population distribution, a heldout dataset. This method blends Bayesian modelling with frequentist assessment. Unlike the PPC, we prove that the HPC is properly calibrated. Empirically, we study HPC on classical regression, a hierarchical model of text data, and factor analysis.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"199 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad105","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Bayesian modelling helps applied researchers to articulate assumptions about their data and develop models tailored for specific applications. Thanks to good methods for approximate posterior inference, researchers can now easily build, use, and revise complicated Bayesian models for large and rich data. These capabilities, however, bring into focus the problem of model criticism. Researchers need tools to diagnose the fitness of their models, to understand where they fall short, and to guide their revision. In this paper, we develop a new method for Bayesian model criticism, the holdout predictive check (HPC). Holdout predictive check are built on posterior predictive check (PPC), a seminal method that checks a model by assessing the posterior predictive distribution on the observed data. However, PPC use the data twice—both to calculate the posterior predictive and to evaluate it—which can lead to uncalibrated p-values. Holdout predictive check, in contrast, compare the posterior predictive distribution to a draw from the population distribution, a heldout dataset. This method blends Bayesian modelling with frequentist assessment. Unlike the PPC, we prove that the HPC is properly calibrated. Empirically, we study HPC on classical regression, a hierarchical model of text data, and factor analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拒绝对贝叶斯模型批评的预测检查
贝叶斯建模帮助应用研究人员清晰地表达关于他们的数据的假设,并开发适合特定应用的模型。由于近似后验推理的良好方法,研究人员现在可以轻松地为大型和丰富的数据构建,使用和修改复杂的贝叶斯模型。然而,这些能力引起了模型批评问题的关注。研究人员需要工具来诊断他们的模型是否适合,了解他们的不足之处,并指导他们的修正。本文提出了一种新的贝叶斯模型批评方法——滞留预测检验(HPC)。Holdout预测检验建立在后验预测检验(PPC)的基础上,后验预测检验是一种通过评估观测数据的后验预测分布来检验模型的开创性方法。然而,PPC使用数据两次——计算后验预测和评估它——这可能导致未校准的p值。相比之下,Holdout预测检验将后验预测分布与总体分布(Holdout数据集)的抽取结果进行比较。该方法将贝叶斯建模与频率评估相结合。与PPC不同,我们证明了HPC是正确校准的。在实证方面,我们通过经典回归、文本数据的层次模型和因子分析来研究HPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
83
审稿时长
>12 weeks
期刊介绍: Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.
期刊最新文献
Model-assisted sensitivity analysis for treatment effects under unmeasured confounding via regularized calibrated estimation. Interpretable discriminant analysis for functional data supported on random nonlinear domains with an application to Alzheimer's disease. GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments. Doubly robust calibration of prediction sets under covariate shift. Gradient synchronization for multivariate functional data, with application to brain connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1