SRGAN in underwater vision

Dingqian Zhao
{"title":"SRGAN in underwater vision","authors":"Dingqian Zhao","doi":"10.1016/j.cogr.2023.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the rapid industrialization of the world has led to an increasing importance of energy minerals. However, due to the scarcity of mineral resources, opportunities to rely on alternative energy are escalating. As a result, exploration of ocean resources, which exist abundantly in the sea, is being pursued. However, the manual exploration of ocean resources by diving and visually searching is dangerous and impractical. Therefore, it is pertinent to safely advance underwater exploration by having robots perform the work instead. In underwater environments, robots are commonly used as a mainstream exploration tool due to the various hazardous environmental conditions. However, there are several problems with controlling robots in underwater environments, and one of them is poor visibility underwater. Therefore, to improve visibility underwater, efforts are being made to achieve high resolution using super-resolution technology on underwater images. In this paper we first introduce the general model and architecture in GAN. Then we combine the GAN modal and characteristics of the underwater environment, elaborating how ESRGAN can be suitable for such circumstance. For data from ECCV2018 PIRM-SR, ESRGAN outperforms other traditional model like EnhanceNet <span>[1]</span>, EDSR <span>[2]</span>, RCAN <span>[3]</span>, at least 24 % <span>[4]</span>. Such model can be equipped with robotics that highly depends on the resolution of the image, such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs).</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 1-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241323000289/pdfft?md5=327c4a7880ba070fb45e7c349a11ba1e&pid=1-s2.0-S2667241323000289-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241323000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the rapid industrialization of the world has led to an increasing importance of energy minerals. However, due to the scarcity of mineral resources, opportunities to rely on alternative energy are escalating. As a result, exploration of ocean resources, which exist abundantly in the sea, is being pursued. However, the manual exploration of ocean resources by diving and visually searching is dangerous and impractical. Therefore, it is pertinent to safely advance underwater exploration by having robots perform the work instead. In underwater environments, robots are commonly used as a mainstream exploration tool due to the various hazardous environmental conditions. However, there are several problems with controlling robots in underwater environments, and one of them is poor visibility underwater. Therefore, to improve visibility underwater, efforts are being made to achieve high resolution using super-resolution technology on underwater images. In this paper we first introduce the general model and architecture in GAN. Then we combine the GAN modal and characteristics of the underwater environment, elaborating how ESRGAN can be suitable for such circumstance. For data from ECCV2018 PIRM-SR, ESRGAN outperforms other traditional model like EnhanceNet [1], EDSR [2], RCAN [3], at least 24 % [4]. Such model can be equipped with robotics that highly depends on the resolution of the image, such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下视觉中的SRGAN
近年来,世界工业化的迅速发展使得能源矿产的重要性日益凸显。然而,由于矿产资源的稀缺,依赖替代能源的机会正在增加。因此,正在进行对海洋中丰富的海洋资源的勘探。然而,通过潜水和目视搜索对海洋资源进行人工勘探是危险和不切实际的。因此,用机器人代替机器人来安全推进水下探测是有意义的。在水下环境中,由于各种危险的环境条件,机器人被普遍用作主流的勘探工具。然而,在水下环境中控制机器人存在几个问题,其中之一是水下能见度差。因此,为了提高水下的能见度,人们正在努力利用超分辨率技术实现水下图像的高分辨率。本文首先介绍了GAN的一般模型和结构。然后结合GAN模态和水下环境的特点,阐述了ESRGAN如何适用于这种环境。对于来自ECCV2018 PIRM-SR的数据,ESRGAN比EnhanceNet[1]、EDSR[2]、RCAN[3]等其他传统模型至少高出24%[4]。这种模型可以装备高度依赖图像分辨率的机器人,如自主水下航行器(auv)和远程操作车辆(rov)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Optimizing Food Sample Handling and Placement Pattern Recognition with YOLO: Advanced Techniques in Robotic Object Detection Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5) Scalable and cohesive swarm control based on reinforcement learning POMDP-based probabilistic decision making for path planning in wheeled mobile robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1