{"title":"LiPE: Lightweight human pose estimator for mobile applications towards automated pose analysis","authors":"Chengxiu Li , Ni Duan","doi":"10.1016/j.cogr.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Current human pose estimation models adopt heavy backbones and complex feature enhance- ment modules to pursue higher accuracy. However, they ignore the need for model efficiency in real-world applications. In real-world scenarios such as sports teaching and automated sports analysis for better preservation of traditional folk sports, human pose estimation often needs to be performed on mobile devices with limited computing resources. In this paper, we propose a lightweight human pose estimator termed LiPE. LiPE adopts a lightweight MobileNetV2 backbone for feature extraction and lightweight depthwise separable deconvolution modules for upsampling. Predictions are made at a high resolution with a lightweight prediction head. Compared with the baseline, our model reduces MACs by 93.2 %, and reduces the number of parameters by 93.9 %, while the accuracy drops by only 3.2 %. Based on LiPE, we develop a real- time human pose estimation and evaluation system for automated pose analysis. Experimental results show that our LiPE achieves high computational efficiency and good accuracy for application on mobile devices.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 26-36"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241324000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Current human pose estimation models adopt heavy backbones and complex feature enhance- ment modules to pursue higher accuracy. However, they ignore the need for model efficiency in real-world applications. In real-world scenarios such as sports teaching and automated sports analysis for better preservation of traditional folk sports, human pose estimation often needs to be performed on mobile devices with limited computing resources. In this paper, we propose a lightweight human pose estimator termed LiPE. LiPE adopts a lightweight MobileNetV2 backbone for feature extraction and lightweight depthwise separable deconvolution modules for upsampling. Predictions are made at a high resolution with a lightweight prediction head. Compared with the baseline, our model reduces MACs by 93.2 %, and reduces the number of parameters by 93.9 %, while the accuracy drops by only 3.2 %. Based on LiPE, we develop a real- time human pose estimation and evaluation system for automated pose analysis. Experimental results show that our LiPE achieves high computational efficiency and good accuracy for application on mobile devices.