Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOv7

Yuntao Wei, Xiujia Wang, Chunjuan Bo, Zhan Shi
{"title":"Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOv7","authors":"Yuntao Wei,&nbsp;Xiujia Wang,&nbsp;Chunjuan Bo,&nbsp;Zhan Shi","doi":"10.1016/j.cogr.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing use and militarization of UAV technology presents significant challenges to nations and societies. Notably, there is a deficit in anti- UAV technologies for civilian use, particularly in complex urban environments at low altitudes. This paper proposes the ESMS-YOLOv7 algorithm, which is specifically engineered to detect small target UAVs in such challenging urban landscapes. The algorithm focuses on the extraction of features from small target UAVs in urban contexts. Enhancements to YOLOv7 include the integration of the ELAN-C module, the SimSPPFCSPC-R module, and the MP-CBAM module, which collectively improve the network's ability to extract features and focus on small target UAVs. Additionally, the SIOU loss function is employed to increase the model's robustness. The effectiveness of the ESMS-YOLOv7 algorithm is validated through its performance on the DUT Anti-UAV dataset, where it exhibits superior capabilities relative to other leading algorithms.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 14-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241324000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing use and militarization of UAV technology presents significant challenges to nations and societies. Notably, there is a deficit in anti- UAV technologies for civilian use, particularly in complex urban environments at low altitudes. This paper proposes the ESMS-YOLOv7 algorithm, which is specifically engineered to detect small target UAVs in such challenging urban landscapes. The algorithm focuses on the extraction of features from small target UAVs in urban contexts. Enhancements to YOLOv7 include the integration of the ELAN-C module, the SimSPPFCSPC-R module, and the MP-CBAM module, which collectively improve the network's ability to extract features and focus on small target UAVs. Additionally, the SIOU loss function is employed to increase the model's robustness. The effectiveness of the ESMS-YOLOv7 algorithm is validated through its performance on the DUT Anti-UAV dataset, where it exhibits superior capabilities relative to other leading algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOv7 LiPE: Lightweight human pose estimator for mobile applications towards automated pose analysis Integrated model for segmentation of glomeruli in kidney images Zero-shot intelligent fault diagnosis via semantic fusion embedding Attention-assisted dual-branch interactive face super-resolution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1