A classification of S-boxes generated by orthogonal cellular automata

IF 1.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Natural Computing Pub Date : 2023-08-24 DOI:10.1007/s11047-023-09956-z
Luca Mariot, Luca Manzoni
{"title":"A classification of S-boxes generated by orthogonal cellular automata","authors":"Luca Mariot, Luca Manzoni","doi":"10.1007/s11047-023-09956-z","DOIUrl":null,"url":null,"abstract":"Abstract Most of the approaches published in the literature to construct S-boxes via Cellular Automata (CA) work by either iterating a finite CA for several time steps, or by a one-shot application of the global rule. The main characteristic that brings together these works is that they employ a single CA rule to define the vectorial Boolean function of the S-box. In this work, we explore a different direction for the design of S-boxes that leverages on Orthogonal CA (OCA), i.e. pairs of CA rules giving rise to orthogonal Latin squares. The motivation stands on the facts that an OCA pair already defines a bijective transformation, and moreover the orthogonality property of the resulting Latin squares ensures a minimum amount of diffusion. We exhaustively enumerate all S-boxes generated by OCA pairs of diameter $$4 \\le d \\le 6$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>d</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:math> , and measure their nonlinearity. Interestingly, we observe that for $$d=4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> and $$d=5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> all S-boxes are linear, despite the underlying CA local rules being nonlinear. The smallest nonlinear S-boxes emerges for $$d=6$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>=</mml:mo> <mml:mn>6</mml:mn> </mml:mrow> </mml:math> , but their nonlinearity is still too low to be used in practice. Nonetheless, we unearth an interesting structure of linear OCA S-boxes, proving that their Linear Components Space is itself the image of a linear CA, or equivalently a polynomial code. We finally classify all linear OCA S-boxes in terms of their generator polynomials.","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":"105 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11047-023-09956-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Most of the approaches published in the literature to construct S-boxes via Cellular Automata (CA) work by either iterating a finite CA for several time steps, or by a one-shot application of the global rule. The main characteristic that brings together these works is that they employ a single CA rule to define the vectorial Boolean function of the S-box. In this work, we explore a different direction for the design of S-boxes that leverages on Orthogonal CA (OCA), i.e. pairs of CA rules giving rise to orthogonal Latin squares. The motivation stands on the facts that an OCA pair already defines a bijective transformation, and moreover the orthogonality property of the resulting Latin squares ensures a minimum amount of diffusion. We exhaustively enumerate all S-boxes generated by OCA pairs of diameter $$4 \le d \le 6$$ 4 d 6 , and measure their nonlinearity. Interestingly, we observe that for $$d=4$$ d = 4 and $$d=5$$ d = 5 all S-boxes are linear, despite the underlying CA local rules being nonlinear. The smallest nonlinear S-boxes emerges for $$d=6$$ d = 6 , but their nonlinearity is still too low to be used in practice. Nonetheless, we unearth an interesting structure of linear OCA S-boxes, proving that their Linear Components Space is itself the image of a linear CA, or equivalently a polynomial code. We finally classify all linear OCA S-boxes in terms of their generator polynomials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正交元胞自动机的s -box分类
文献中发表的大多数通过元胞自动机(CA)构建s -box的方法要么是在几个时间步上迭代有限的CA,要么是通过一次应用全局规则来实现。将这些作品结合在一起的主要特征是它们使用单个CA规则来定义s盒的向量布尔函数。在这项工作中,我们探索了利用正交CA (OCA)设计s盒的不同方向,即产生正交拉丁方的CA规则对。其动机是基于OCA对已经定义了一个双射变换,而且所得到的拉丁平方的正交性保证了最小的扩散量。我们穷极枚举由直径为$$4 \le d \le 6$$ 4≤d≤6的OCA对产生的所有s -box,并测量其非线性。有趣的是,我们观察到,对于$$d=4$$ d = 4和$$d=5$$ d = 5,尽管底层CA局部规则是非线性的,但所有s盒都是线性的。最小的非线性s盒出现在$$d=6$$ d = 6,但其非线性仍然太低,无法在实际中使用。尽管如此,我们还是发现了一个有趣的线性OCA s -box结构,证明了它们的线性分量空间本身就是线性CA的图像,或者等价地说是多项式编码。最后,我们根据它们的生成器多项式对所有线性OCA s盒进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Computing
Natural Computing Computer Science-Computer Science Applications
CiteScore
4.40
自引率
4.80%
发文量
49
审稿时长
3 months
期刊介绍: The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.
期刊最新文献
Real-time computing and robust memory with deterministic chemical reaction networks Integrated dynamic spiking neural P systems for fault line selection in distribution network Reaction mining for reaction systems Melding Boolean networks and reaction systems under synchronous, asynchronous and most permissive semantics Distinguishing genelet circuit input pulses via a pulse detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1