Roberto Bruni, Roberta Gori, Paolo Milazzo, Hélène Siboulet
{"title":"Melding Boolean networks and reaction systems under synchronous, asynchronous and most permissive semantics","authors":"Roberto Bruni, Roberta Gori, Paolo Milazzo, Hélène Siboulet","doi":"10.1007/s11047-024-09990-5","DOIUrl":null,"url":null,"abstract":"<p>This paper forges a strong connection between two well known computational frameworks for representing biological systems, in order to facilitate the seamless transfer of techniques between them. Boolean networks are a well established formalism employed from biologists. They have been studied under different (synchronous and asynchronous) update semantics, enabling the observation and characterisation of distinct facets of system behaviour. Recently, a new semantics for Boolean networks has been proposed, called <i>most permissive semantics</i>, that enables a more faithful representation of biological phenomena. Reaction systems offer a streamlined formalism inspired by biochemical reactions in living cells. Reaction systems support a full range of analysis techniques that can help for gaining deeper insights into the underlying biological phenomena. Our goal is to leverage the available toolkit for predicting and comprehending the behaviour of reaction systems within the realm of Boolean networks. In this paper, we first extend the behaviour of reaction systems to several asynchronous semantics, including the most permissive one, and then we demonstrate that Boolean networks and reaction systems exhibit isomorphic behaviours under the synchronous, general/fully asynchronous and most permissive semantics.</p>","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":"24 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11047-024-09990-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper forges a strong connection between two well known computational frameworks for representing biological systems, in order to facilitate the seamless transfer of techniques between them. Boolean networks are a well established formalism employed from biologists. They have been studied under different (synchronous and asynchronous) update semantics, enabling the observation and characterisation of distinct facets of system behaviour. Recently, a new semantics for Boolean networks has been proposed, called most permissive semantics, that enables a more faithful representation of biological phenomena. Reaction systems offer a streamlined formalism inspired by biochemical reactions in living cells. Reaction systems support a full range of analysis techniques that can help for gaining deeper insights into the underlying biological phenomena. Our goal is to leverage the available toolkit for predicting and comprehending the behaviour of reaction systems within the realm of Boolean networks. In this paper, we first extend the behaviour of reaction systems to several asynchronous semantics, including the most permissive one, and then we demonstrate that Boolean networks and reaction systems exhibit isomorphic behaviours under the synchronous, general/fully asynchronous and most permissive semantics.
期刊介绍:
The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.