None Lay Boon Tan, None Milad Hafezolghorani, None Azman Mohamed, None Khaled Ghaedi, None Yen Lei Voo
{"title":"Utilizing Ultra-High Performance Concrete Overlay for Road Pavement Repair and Strengthening Applications","authors":"None Lay Boon Tan, None Milad Hafezolghorani, None Azman Mohamed, None Khaled Ghaedi, None Yen Lei Voo","doi":"10.46604/aiti.2023.12587","DOIUrl":null,"url":null,"abstract":"This study aims to develop a new thixotropic ultra-high-performance concrete (UHPC) overlay for the repair and strengthening of damaged hot mix asphalt (HMA) pavements. The overlay is purposely designed to accommodate the roadway slope of up to 10% due to presence of viscosifying agent materials. The original UHPC materials are comprised of granite aggregate, ultra-fine calcium carbonate, shrinkage-reducing admixture, viscosifying agent, and expansive agent. The study is conducted with three sets of samples provided and considers thixotropic and mitigated shrinkage properties through comparing control (non-thixotropic) overlay 1 (thixotropic), and overlay 2 (thixotropic) mixtures. Based on the obtained results, only overlay 1 corresponds to the minimum requirement for pavement rehabilitation, with 160-200 mm flowability and -545.3 µm/m free shrinkage. As a result, an average 50 mm thick overlay 1 is selected to repair a damaged HMA pavement (1800 m2), while the field implementation procedures and drawing details are also presented in this paper.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.12587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a new thixotropic ultra-high-performance concrete (UHPC) overlay for the repair and strengthening of damaged hot mix asphalt (HMA) pavements. The overlay is purposely designed to accommodate the roadway slope of up to 10% due to presence of viscosifying agent materials. The original UHPC materials are comprised of granite aggregate, ultra-fine calcium carbonate, shrinkage-reducing admixture, viscosifying agent, and expansive agent. The study is conducted with three sets of samples provided and considers thixotropic and mitigated shrinkage properties through comparing control (non-thixotropic) overlay 1 (thixotropic), and overlay 2 (thixotropic) mixtures. Based on the obtained results, only overlay 1 corresponds to the minimum requirement for pavement rehabilitation, with 160-200 mm flowability and -545.3 µm/m free shrinkage. As a result, an average 50 mm thick overlay 1 is selected to repair a damaged HMA pavement (1800 m2), while the field implementation procedures and drawing details are also presented in this paper.