Efficient Object Detection and Intelligent Information Display Using YOLOv4-Tiny

Ying-Tung Hsiao, J. Sheu, Hsu Ma
{"title":"Efficient Object Detection and Intelligent Information Display Using YOLOv4-Tiny","authors":"Ying-Tung Hsiao, J. Sheu, Hsu Ma","doi":"10.46604/aiti.2023.12682","DOIUrl":null,"url":null,"abstract":"This study aims to develop an innovative image recognition and information display approach based on you only look once version 4 (YOLOv4)-tiny framework. The lightweight YOLOv4-tiny model is modified by replacing convolutional modules with Fire modules to further reduce its parameters. Performance reductions are offset by including spatial pyramid pooling, and they also improve the model’s detection ability for objects of various sizes. The pattern analysis, statistical modeling, and computational learning visual object classes (PASCAL VOC) 2012 dataset are used, the proposed modified YOLOv4-tiny architecture achieves a higher mean average precision (mAP) that is 1.59% higher than its unmodified counterpart. This study addresses the need for efficient object detection and recognition on resource-constrained devices by leveraging YOLOv4-tiny, Fire modules, and SPP to achieve accurate image recognition at a low computational cost.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":"131 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.12682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop an innovative image recognition and information display approach based on you only look once version 4 (YOLOv4)-tiny framework. The lightweight YOLOv4-tiny model is modified by replacing convolutional modules with Fire modules to further reduce its parameters. Performance reductions are offset by including spatial pyramid pooling, and they also improve the model’s detection ability for objects of various sizes. The pattern analysis, statistical modeling, and computational learning visual object classes (PASCAL VOC) 2012 dataset are used, the proposed modified YOLOv4-tiny architecture achieves a higher mean average precision (mAP) that is 1.59% higher than its unmodified counterpart. This study addresses the need for efficient object detection and recognition on resource-constrained devices by leveraging YOLOv4-tiny, Fire modules, and SPP to achieve accurate image recognition at a low computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 YOLOv4-Tiny 实现高效物体检测和智能信息显示
本研究旨在基于YOLOv4-tiny框架开发一种创新的图像识别和信息显示方法。通过用 Fire 模块取代卷积模块,对轻量级 YOLOv4-tiny 模型进行了修改,以进一步降低其参数。由于加入了空间金字塔池,因此抵消了性能降低的影响,同时也提高了模型对各种大小物体的检测能力。在使用 2012 年模式分析、统计建模和计算学习视觉对象类别(PASCAL VOC)数据集时,所提出的改进型 YOLOv4-tiny 架构实现了更高的平均精度(mAP),比其未修改的对应架构高出 1.59%。本研究通过利用 YOLOv4-tiny、Fire 模块和 SPP,以较低的计算成本实现精确的图像识别,满足了在资源有限的设备上进行高效物体检测和识别的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Synthesis and Characterization of Phase Change Microcapsules Containing Nano-Graphite Challenges and Solutions to Criminal Liability for the Actions of Robots and AI Selection of Elevation Models for Flood Inundation Map Generation in Small Urban Stream: Case Study of Anyang Stream Efficient Object Detection and Intelligent Information Display Using YOLOv4-Tiny The Prediction of Low-Rise Building Construction Cost Estimation Using Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1