Phenolic compounds inhibit viability and infectivity of the grapevine pathogens Diplodia seriata, Eutypa lata, Fomitiporia mediterranea, and Neofusicoccum parvum

IF 1.9 3区 农林科学 Q2 AGRONOMY Phytopathologia Mediterranea Pub Date : 2023-09-15 DOI:10.36253/phyto-14716
Kateřina ŠTŮSKOVÁ, Vincenzo MONDELLO, Eliška HAKALOVÁ, Dorota TEKIELSKA, Florence FONTAINE, Aleš EICHMEIER
{"title":"Phenolic compounds inhibit viability and infectivity of the grapevine pathogens Diplodia seriata, Eutypa lata, Fomitiporia mediterranea, and Neofusicoccum parvum","authors":"Kateřina ŠTŮSKOVÁ, Vincenzo MONDELLO, Eliška HAKALOVÁ, Dorota TEKIELSKA, Florence FONTAINE, Aleš EICHMEIER","doi":"10.36253/phyto-14716","DOIUrl":null,"url":null,"abstract":"Many fungal pathogens are associated with grapevine trunk diseases (GTDs), which cause important yield and economic losses in grape production. There are no effective control methods against GTDs once plants are infected, so research is aimed at preventive measures to avoid infections in nurseries and vineyards. Inhibitory activities of the phenolic compounds eugenol, epigallocatechin–3–O–gallate (EGCG) and thymol against the GTD fungi Diplodia seriata, Eutypa lata, Fomitiporia mediterranea and Neofusicoccum parvum were assessed in vitro, and in planta as grapevine pruning wound treatments. Greatest inhibition of pathogen mycelium growth was observed with eugenol (fungistatic at 1,500 µg mL–1, fungicidal at 2,500 µg mL–1). No inhibitory activity against GTD fungi was observed with EGCG. Minimum concentrations with in vitro inhibitory effects on D. seriata and N. parvum spore germination were 360 µg mL–1 for thymol and 750 µg mL–1 for eugenol. In the grapevine wound protection tests, thymol was effective against N. parvum at 360 µg mL–1, but eugenol was not.","PeriodicalId":20165,"journal":{"name":"Phytopathologia Mediterranea","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathologia Mediterranea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/phyto-14716","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Many fungal pathogens are associated with grapevine trunk diseases (GTDs), which cause important yield and economic losses in grape production. There are no effective control methods against GTDs once plants are infected, so research is aimed at preventive measures to avoid infections in nurseries and vineyards. Inhibitory activities of the phenolic compounds eugenol, epigallocatechin–3–O–gallate (EGCG) and thymol against the GTD fungi Diplodia seriata, Eutypa lata, Fomitiporia mediterranea and Neofusicoccum parvum were assessed in vitro, and in planta as grapevine pruning wound treatments. Greatest inhibition of pathogen mycelium growth was observed with eugenol (fungistatic at 1,500 µg mL–1, fungicidal at 2,500 µg mL–1). No inhibitory activity against GTD fungi was observed with EGCG. Minimum concentrations with in vitro inhibitory effects on D. seriata and N. parvum spore germination were 360 µg mL–1 for thymol and 750 µg mL–1 for eugenol. In the grapevine wound protection tests, thymol was effective against N. parvum at 360 µg mL–1, but eugenol was not.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酚类化合物抑制葡萄病原菌的生存力和传染性,如:serplodia serata, Eutypa lata, Fomitiporia mediterranea和Neofusicoccum parvum
葡萄主干病害是葡萄生产中造成重大产量和经济损失的主要病原菌。一旦植物感染了gtd,就没有有效的控制方法,因此研究的目的是预防措施,以避免苗圃和葡萄园的感染。研究了丁香酚、表没食子儿茶素- 3 - o -没食子酸酯(EGCG)和百里香酚对GTD真菌seriata Diplodia、Eutypa lata、Fomitiporia mediterranea和Neofusicoccum parvum的体外抑制活性,并在葡萄植株上进行了修剪伤口处理。丁香酚对病原菌菌丝体生长的抑制作用最大(抑菌量为1500µg mL-1,杀真菌量为2500µg mL-1)。EGCG对GTD真菌无抑制作用。百里香酚和丁香酚分别为360µg mL-1和750µg mL-1,对细叶小孢子虫和小孢子虫的孢子萌发具有体外抑制作用。在葡萄藤伤口保护试验中,百里香酚在360µg mL-1浓度下对小乳杆菌有效,而丁香酚则无效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathologia Mediterranea
Phytopathologia Mediterranea 生物-植物科学
CiteScore
4.40
自引率
8.30%
发文量
28
审稿时长
6-12 weeks
期刊介绍: Phytopathologia Mediterranea is an international journal edited by the Mediterranean Phytopathological Union. The journal’s mission is the promotion of plant health for Mediterranean crops, climate and regions, safe food production, and the transfer of new knowledge on plant diseases and their sustainable management. The journal deals with all areas of plant pathology, including etiology, epidemiology, disease control, biochemical and physiological aspects, and utilization of molecular technologies. All types of plant pathogens are covered, including fungi, oomycetes, nematodes, protozoa, bacteria, phytoplasmas, viruses, and viroids. The journal also gives a special attention to research on mycotoxins, biological and integrated management of plant diseases, and the use of natural substances in disease and weed control. The journal focuses on pathology of Mediterranean crops grown throughout the world. The Editorial Board of Phytopathologia Mediterranea has recently been reorganised, under two Editors-in-Chief and with an increased number of editors.
期刊最新文献
Enhancing epidemiological knowledge of Botryosphaeriaceae in Mexican vineyards Genetic variability of grapevine Pinot gris virus (GPGV) in an organically cultivated vineyard in Hungary Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 in banana plantations in Türkiye Diversity of Colletotrichum species on strawberry (Fragaria × ananassa) in Germany Evaluation of fungicides for management of Botryosphaeriaceae associated with dieback in Australian walnut orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1