Numerical simulation and safety distance analysis of slope instability of ionic rare earth tailings in different rainy seasons

IF 4.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geomatics Natural Hazards & Risk Pub Date : 2023-11-07 DOI:10.1080/19475705.2023.2277127
Jiabo Geng, Zhisong Wang, Xiang Lan, Xiaoshuang Li, Dongming Zhang
{"title":"Numerical simulation and safety distance analysis of slope instability of ionic rare earth tailings in different rainy seasons","authors":"Jiabo Geng, Zhisong Wang, Xiang Lan, Xiaoshuang Li, Dongming Zhang","doi":"10.1080/19475705.2023.2277127","DOIUrl":null,"url":null,"abstract":"A significant number of ionic rare earth tailings slopes were generated during the process of rare earth mining and the factor of safety of these slopes continued to decrease under the action of rainfall. This study focussed on a specific tailings slope located in Dayu County, Ganzhou City. Through the utilization of MatDEM numerical simulation software, the variations in infiltration distribution and destabilization evolution of the tailings slope between different seasons were comparatively examined. The results indicated that during the rainy season (May to June), increased rainfall led to increased rate of water infiltration, consequently reducing the stability of the slope and exacerbating landslide damage. Furthermore, the study provided analyses of safety distances under different seasons of rainfall, taking into account the geographical location of the tailings slope in Dayu County, Ganzhou City, and the results of the analyses provided theoretical foundation into ensuring the safety of buildings and residents downstream of the slope.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":"79 3","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2277127","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A significant number of ionic rare earth tailings slopes were generated during the process of rare earth mining and the factor of safety of these slopes continued to decrease under the action of rainfall. This study focussed on a specific tailings slope located in Dayu County, Ganzhou City. Through the utilization of MatDEM numerical simulation software, the variations in infiltration distribution and destabilization evolution of the tailings slope between different seasons were comparatively examined. The results indicated that during the rainy season (May to June), increased rainfall led to increased rate of water infiltration, consequently reducing the stability of the slope and exacerbating landslide damage. Furthermore, the study provided analyses of safety distances under different seasons of rainfall, taking into account the geographical location of the tailings slope in Dayu County, Ganzhou City, and the results of the analyses provided theoretical foundation into ensuring the safety of buildings and residents downstream of the slope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同雨季离子型稀土尾矿边坡失稳数值模拟及安全距离分析
稀土开采过程中产生了大量离子型稀土尾矿边坡,在降雨作用下,离子型稀土尾矿边坡的安全系数持续降低。本研究以赣州市大余县某尾矿坡为研究对象。利用MatDEM数值模拟软件,对比考察了不同季节尾矿库边坡入渗分布及失稳演化的变化规律。结果表明:在雨季(5 ~ 6月),降雨增加导致入渗速率增加,从而降低了边坡的稳定性,加剧了滑坡破坏;考虑赣州市大余县尾矿库边坡的地理位置,对不同降雨季节下的安全距离进行了分析,分析结果为保障尾矿库边坡下游建筑和居民的安全提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomatics Natural Hazards & Risk
Geomatics Natural Hazards & Risk GEOSCIENCES, MULTIDISCIPLINARY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
7.70
自引率
4.80%
发文量
117
审稿时长
>12 weeks
期刊介绍: The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards. Geomatics, Natural Hazards and Risk covers the following topics: - Remote sensing techniques - Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change - Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards. - Results of findings on major natural hazards
期刊最新文献
Drought driving mechanism and risk situation prediction based on machine learning models in the Yellow River Basin, China Dynamic association of slope movements in the Uttarakhand Himalaya: a critical review on the landslide susceptibility assessment Co-seismic characterization analysis in PWV and land-atmospheric observations associated with Luding Ms 6.8 earthquake occurrence in China on September 5, 2022 Application research on digital twins of urban earthquake disasters Numerical simulation and safety distance analysis of slope instability of ionic rare earth tailings in different rainy seasons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1