Indranil Hazra, Arko Chattejee, Joseph Southgate, Matthew Weiner, Katrina Groth, Shapour Azarm
{"title":"A Reliability-Based Optimization Framework for Planning Operational Profiles for Unmanned Systems","authors":"Indranil Hazra, Arko Chattejee, Joseph Southgate, Matthew Weiner, Katrina Groth, Shapour Azarm","doi":"10.1115/1.4063661","DOIUrl":null,"url":null,"abstract":"Abstract Unmanned engineering systems that execute various operations are becoming increasingly complex relying on a large number of components and their interactions. The reliability, maintainability, and performance optimization of these systems are critical due to their intricate nature and inaccessibility during operations. This paper introduces a new reliability-based optimization framework for planning operational profiles for unmanned systems. The proposed method employs deep learning techniques for subsystem health monitoring, dynamic Bayesian networks for system reliability analysis, and multi-objective optimization schemes for optimizing system performance. The proposed framework systematically integrates these schemes to enable their application to a wide range of tasks, including offline reliability-based optimization of system operational profiles. This framework is the first in the literature that incorporates health monitoring of multi-component systems with causal relationships. Using this hybrid scheme on unmanned systems can improve their reliability, extend their lifespan, and enable them to execute more challenging missions. The proposed framework is implemented and executed using a simulation model for the engine cooling and control system of an unmanned surface vessel.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"67 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063661","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Unmanned engineering systems that execute various operations are becoming increasingly complex relying on a large number of components and their interactions. The reliability, maintainability, and performance optimization of these systems are critical due to their intricate nature and inaccessibility during operations. This paper introduces a new reliability-based optimization framework for planning operational profiles for unmanned systems. The proposed method employs deep learning techniques for subsystem health monitoring, dynamic Bayesian networks for system reliability analysis, and multi-objective optimization schemes for optimizing system performance. The proposed framework systematically integrates these schemes to enable their application to a wide range of tasks, including offline reliability-based optimization of system operational profiles. This framework is the first in the literature that incorporates health monitoring of multi-component systems with causal relationships. Using this hybrid scheme on unmanned systems can improve their reliability, extend their lifespan, and enable them to execute more challenging missions. The proposed framework is implemented and executed using a simulation model for the engine cooling and control system of an unmanned surface vessel.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.