Preliminary hydraulic fracturing campaign strategies for unconventional and tight reservoirs of UAE: Case studies and lessons learned

IF 1.8 Q4 ENERGY & FUELS AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023050
Gehad M. Hegazy, Taha Yehia, Omar Mahmoud
{"title":"Preliminary hydraulic fracturing campaign strategies for unconventional and tight reservoirs of UAE: Case studies and lessons learned","authors":"Gehad M. Hegazy, Taha Yehia, Omar Mahmoud","doi":"10.3934/energy.2023050","DOIUrl":null,"url":null,"abstract":"<abstract> <p>The challenges associated with applying hydraulic fracturing (HF) technology to tight carbonate reservoirs with very low clay content are substantial and demand a unique cost optimization strategy, especially in the context of low oil prices. This study discusses the challenges of applying HF technology to such reservoirs in the UAE. The work presents a comprehensive approach to assess and employ this technology, including a thorough study, a strategic roadmap, screening procedures, a fracturing workflow and strategy and an examination of the distinctive challenges and lessons learned from the process. The primary goal is to formulate a strategy that is applicable to tight and unconventional formations in the UAE, with a strong emphasis on cost optimization. Also, the evaluation methods of the fracturing technologies for these reservoirs were discussed, such as creating valid geomechanical properties to construct a Mechanical Earth Model (MEM) for successful execution and evaluating the reservoir quality. The results showed that conventional acidizing is not effective in stimulating the tight carbonate reservoirs, whereas acid-fracturing has successfully broken down the formation. It was also found that strategic planning, equipment availability, geomechanical studies and building an effective MEM are necessary for obtaining the optimum fracturing design and achieving successful development.</p> </abstract>","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"233 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The challenges associated with applying hydraulic fracturing (HF) technology to tight carbonate reservoirs with very low clay content are substantial and demand a unique cost optimization strategy, especially in the context of low oil prices. This study discusses the challenges of applying HF technology to such reservoirs in the UAE. The work presents a comprehensive approach to assess and employ this technology, including a thorough study, a strategic roadmap, screening procedures, a fracturing workflow and strategy and an examination of the distinctive challenges and lessons learned from the process. The primary goal is to formulate a strategy that is applicable to tight and unconventional formations in the UAE, with a strong emphasis on cost optimization. Also, the evaluation methods of the fracturing technologies for these reservoirs were discussed, such as creating valid geomechanical properties to construct a Mechanical Earth Model (MEM) for successful execution and evaluating the reservoir quality. The results showed that conventional acidizing is not effective in stimulating the tight carbonate reservoirs, whereas acid-fracturing has successfully broken down the formation. It was also found that strategic planning, equipment availability, geomechanical studies and building an effective MEM are necessary for obtaining the optimum fracturing design and achieving successful development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿联酋非常规和致密储层的初步水力压裂作业策略:案例研究和经验教训
& lt; abstract>将水力压裂(HF)技术应用于粘土含量极低的致密碳酸盐岩储层面临着巨大的挑战,需要一种独特的成本优化策略,尤其是在低油价的背景下。本研究讨论了在阿联酋将高频技术应用于此类油藏所面临的挑战。该工作提出了评估和应用该技术的综合方法,包括彻底的研究、战略路线图、筛选程序、压裂工作流程和策略,以及对独特挑战和从该过程中吸取的经验教训的研究。主要目标是制定适用于阿联酋致密地层和非常规地层的策略,重点是成本优化。讨论了压裂技术的评价方法,如建立有效的地质力学性质,建立成功实施的力学地球模型(MEM),以及评价储层质量。结果表明,常规酸化对致密碳酸盐岩储层的增产效果不明显,而酸化压裂对储层的破坏效果较好。研究还发现,战略规划、设备可用性、地质力学研究和建立有效的MEM是获得最佳压裂设计和实现成功开发的必要条件。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
期刊最新文献
Afghanistan factor in regional energy security and trade: Existing and projected challenges and opportunities The role of techno-economic factors for net zero carbon emissions in Pakistan Modelling and development of sustainable energy systems Empirical assessment of drivers of electricity prices in East Africa: Panel data experience of Rwanda, Uganda, Tanzania, Burundi, and Kenya Bioenergy potential of agricultural crop residues and municipal solid waste in Cameroon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1