{"title":"Preliminary hydraulic fracturing campaign strategies for unconventional and tight reservoirs of UAE: Case studies and lessons learned","authors":"Gehad M. Hegazy, Taha Yehia, Omar Mahmoud","doi":"10.3934/energy.2023050","DOIUrl":null,"url":null,"abstract":"<abstract> <p>The challenges associated with applying hydraulic fracturing (HF) technology to tight carbonate reservoirs with very low clay content are substantial and demand a unique cost optimization strategy, especially in the context of low oil prices. This study discusses the challenges of applying HF technology to such reservoirs in the UAE. The work presents a comprehensive approach to assess and employ this technology, including a thorough study, a strategic roadmap, screening procedures, a fracturing workflow and strategy and an examination of the distinctive challenges and lessons learned from the process. The primary goal is to formulate a strategy that is applicable to tight and unconventional formations in the UAE, with a strong emphasis on cost optimization. Also, the evaluation methods of the fracturing technologies for these reservoirs were discussed, such as creating valid geomechanical properties to construct a Mechanical Earth Model (MEM) for successful execution and evaluating the reservoir quality. The results showed that conventional acidizing is not effective in stimulating the tight carbonate reservoirs, whereas acid-fracturing has successfully broken down the formation. It was also found that strategic planning, equipment availability, geomechanical studies and building an effective MEM are necessary for obtaining the optimum fracturing design and achieving successful development.</p> </abstract>","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"233 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The challenges associated with applying hydraulic fracturing (HF) technology to tight carbonate reservoirs with very low clay content are substantial and demand a unique cost optimization strategy, especially in the context of low oil prices. This study discusses the challenges of applying HF technology to such reservoirs in the UAE. The work presents a comprehensive approach to assess and employ this technology, including a thorough study, a strategic roadmap, screening procedures, a fracturing workflow and strategy and an examination of the distinctive challenges and lessons learned from the process. The primary goal is to formulate a strategy that is applicable to tight and unconventional formations in the UAE, with a strong emphasis on cost optimization. Also, the evaluation methods of the fracturing technologies for these reservoirs were discussed, such as creating valid geomechanical properties to construct a Mechanical Earth Model (MEM) for successful execution and evaluating the reservoir quality. The results showed that conventional acidizing is not effective in stimulating the tight carbonate reservoirs, whereas acid-fracturing has successfully broken down the formation. It was also found that strategic planning, equipment availability, geomechanical studies and building an effective MEM are necessary for obtaining the optimum fracturing design and achieving successful development.
期刊介绍:
AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy