Assessing the Manufacturability of Students' Early-Stage Designs Based on Previous Experience with Traditional Manufacturing and Additive Manufacturing
{"title":"Assessing the Manufacturability of Students' Early-Stage Designs Based on Previous Experience with Traditional Manufacturing and Additive Manufacturing","authors":"Seth Pearl, Nicholas Meisel","doi":"10.1115/1.4063564","DOIUrl":null,"url":null,"abstract":"Abstract As additive manufacturing (AM) usage increases, designers who wish to maximize AM’s potential must reconsider the traditional manufacturing (TM) axioms they may be more familiar with. While research has previously investigated the potential influences that can affect the designs produced in concept generation, little research has been done explicitly targeting the manufacturability of early-stage concepts and how previous experience and the presenting of priming content in manufacturing affect these concepts. The research in this paper addresses this gap in knowledge, specifically targeting differences in concept generation due to designer experience and presenting design for traditional manufacturing (DFTM) and design for additive manufacturing (DFAM) axioms. To understand how designers approach design creation early in the design process and investigate potential influential factors, participants in this study were asked to complete a design challenge centered on concept generation. Before this design challenge, a randomized subset of these participants received priming content on DFTM and DFAM considerations. These participants’ final designs were evaluated for both traditional manufacturability and additive manufacturability and compared against the final designs produced by participants who did not receive the priming content. Results show that students with low manufacturing experience levels create designs that are more naturally suited for TM. Additionally, as designers’ manufacturing experience levels increase, there is an increase in the number of designs more naturally suited for AM. This correlates with a higher self-reported use of DFAM axioms in the evaluation of these designs. These results suggest that students with high manufacturing experience levels rely on their previous experience when it comes to creating a design for either manufacturing process. Lastly, while the manufacturing priming content significantly influenced the traditional manufacturability of the designs, the priming content did not increase the number of self-reported design for manufacturing (DFM) axioms in the designs.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"65 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract As additive manufacturing (AM) usage increases, designers who wish to maximize AM’s potential must reconsider the traditional manufacturing (TM) axioms they may be more familiar with. While research has previously investigated the potential influences that can affect the designs produced in concept generation, little research has been done explicitly targeting the manufacturability of early-stage concepts and how previous experience and the presenting of priming content in manufacturing affect these concepts. The research in this paper addresses this gap in knowledge, specifically targeting differences in concept generation due to designer experience and presenting design for traditional manufacturing (DFTM) and design for additive manufacturing (DFAM) axioms. To understand how designers approach design creation early in the design process and investigate potential influential factors, participants in this study were asked to complete a design challenge centered on concept generation. Before this design challenge, a randomized subset of these participants received priming content on DFTM and DFAM considerations. These participants’ final designs were evaluated for both traditional manufacturability and additive manufacturability and compared against the final designs produced by participants who did not receive the priming content. Results show that students with low manufacturing experience levels create designs that are more naturally suited for TM. Additionally, as designers’ manufacturing experience levels increase, there is an increase in the number of designs more naturally suited for AM. This correlates with a higher self-reported use of DFAM axioms in the evaluation of these designs. These results suggest that students with high manufacturing experience levels rely on their previous experience when it comes to creating a design for either manufacturing process. Lastly, while the manufacturing priming content significantly influenced the traditional manufacturability of the designs, the priming content did not increase the number of self-reported design for manufacturing (DFM) axioms in the designs.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.