A simple, flexible technique for RF cavity wake-field calculations

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Instrumentation Pub Date : 2023-11-01 DOI:10.1088/1748-0221/18/11/p11004
Brian J. Vaughn
{"title":"A simple, flexible technique for RF cavity wake-field calculations","authors":"Brian J. Vaughn","doi":"10.1088/1748-0221/18/11/p11004","DOIUrl":null,"url":null,"abstract":"Abstract It is typical in the accelerator field to model machine components, especially RF cavities, as parallel RLC resonators. To properly model wake-fields, knowledge of the time-domain voltage resulting from beam excitation is often necessary. While analytical and quasi-analytical expressions are available to accomplish this for common bunch distributions such as the Gaussian, analogous results for less standard distributions can be difficult or computationally-taxing to obtain using direct methods, which opens the door for the development of a more generalized technique. In this paper, a formulation is created that allows for the simple computation of the time-domain voltage waveform of an RLC resonator. The formulation uses the Cauchy Residue Theorem to extract the convolution result from the Fourier Domain, and if current distribution Fourier Transform has no poles, knowledge of its value is only required at one specific evaluation point. This greatly simplifies the computation of the time domain voltage for a large amount of bunch distributions both common and uncommon. Accuracy considerations for this technique and the approximation of accelerator components as RLC resonators are also discussed, resulting the development of a figure of merit for quantifying the robustness of this type of approximation.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"34 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/11/p11004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract It is typical in the accelerator field to model machine components, especially RF cavities, as parallel RLC resonators. To properly model wake-fields, knowledge of the time-domain voltage resulting from beam excitation is often necessary. While analytical and quasi-analytical expressions are available to accomplish this for common bunch distributions such as the Gaussian, analogous results for less standard distributions can be difficult or computationally-taxing to obtain using direct methods, which opens the door for the development of a more generalized technique. In this paper, a formulation is created that allows for the simple computation of the time-domain voltage waveform of an RLC resonator. The formulation uses the Cauchy Residue Theorem to extract the convolution result from the Fourier Domain, and if current distribution Fourier Transform has no poles, knowledge of its value is only required at one specific evaluation point. This greatly simplifies the computation of the time domain voltage for a large amount of bunch distributions both common and uncommon. Accuracy considerations for this technique and the approximation of accelerator components as RLC resonators are also discussed, resulting the development of a figure of merit for quantifying the robustness of this type of approximation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种简单、灵活的射频腔尾流场计算技术
摘要在加速器领域,将机器部件,特别是射频腔建模为并行RLC谐振器是典型的。为了正确地模拟尾流场,通常需要了解由光束激励产生的时域电压。虽然解析和准解析表达式可用于实现常见的束分布(如高斯分布),但使用直接方法获得较少标准分布的类似结果可能很难或计算繁重,这为开发更广义的技术打开了大门。在本文中,创建了一个公式,允许对RLC谐振器的时域电压波形进行简单计算。该公式使用柯西剩余定理从傅里叶域中提取卷积结果,如果当前分布傅里叶变换没有极点,则只需要在一个特定的评估点上了解其值。这大大简化了对大量常见和不常见束分布的时域电压计算。本文还讨论了该技术的精度考虑以及加速器组件作为RLC谐振器的近似,从而得出了量化这种近似鲁棒性的优点图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Instrumentation
Journal of Instrumentation 工程技术-仪器仪表
CiteScore
2.40
自引率
15.40%
发文量
827
审稿时长
7.5 months
期刊介绍: Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include. -Accelerators: concepts, modelling, simulations and sources- Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons- Detector physics: concepts, processes, methods, modelling and simulations- Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics- Instrumentation and methods for plasma research- Methods and apparatus for astronomy and astrophysics- Detectors, methods and apparatus for biomedical applications, life sciences and material research- Instrumentation and techniques for medical imaging, diagnostics and therapy- Instrumentation and techniques for dosimetry, monitoring and radiation damage- Detectors, instrumentation and methods for non-destructive tests (NDT)- Detector readout concepts, electronics and data acquisition methods- Algorithms, software and data reduction methods- Materials and associated technologies, etc.- Engineering and technical issues. JINST also includes a section dedicated to technical reports and instrumentation theses.
期刊最新文献
High-speed readout system of X-ray CMOS image sensor for time domain astronomy Recent advances in combined Positron Emission Tomography and Magnetic Resonance Imaging Characterization of organic glass scintillator bars and their potential for a hybrid neutron/gamma ray imaging system for proton radiotherapy range verification Data analysis methods and applications of the eddy current diagnostic system in the Keda Torus eXperiment device Tracking a moving point source using triple gamma imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1