{"title":"Recognition and statistical method of cows rumination and eating behaviors based on Tensorflow.js","authors":"Yu Zhang, Xiangting Li, Zhiqing Yang, Shaopeng Hu, Xiao Fu, Weizheng Shen","doi":"10.1016/j.inpa.2023.11.002","DOIUrl":null,"url":null,"abstract":"Information about dairy cow ruminating is closely associated with the health status of dairy cows. Therefore, it is of great significance to recognize and make statistics of dairy cows’ ruminating and feeding behavior. Concerning conventional recognition methods which are dependent on contact type devices, they have some defects of poor instantaneity and strong stress responses. As for recognition based on machine vision, it needs to transmit masses of data and raises high requirements for the cloud server and network performance. According to principles of edge computing, the model is deployed via Tensorflow.js in an edge device in the present study, constructing a recognition and statistical system for ruminating and feeding behavior of dairy cows. Through the application programming interface (API) of the browser, an edge device is able to invoke a camera and acquire dairy cow images. Then, the images can be inputted in the SSD MobileNet V2 model, which is followed by inference based on browser hashrate. Moreover, the edge device merely uploads recognition results to the cloud server for statistics, which features high instantaneity and compatibility. In terms of recognizing ruminating and feeding behavior of dairy cows, the proposed system has a precision ratio of 96.50%, a recall rate of 91.77%, an F1-score of 94.08%, specificity of 91.36%, and accuracy of 91.66%. This suggests that the proposed method is effective in recognizing dairy cow behavior.","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"109 4","pages":"0"},"PeriodicalIF":7.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.inpa.2023.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Information about dairy cow ruminating is closely associated with the health status of dairy cows. Therefore, it is of great significance to recognize and make statistics of dairy cows’ ruminating and feeding behavior. Concerning conventional recognition methods which are dependent on contact type devices, they have some defects of poor instantaneity and strong stress responses. As for recognition based on machine vision, it needs to transmit masses of data and raises high requirements for the cloud server and network performance. According to principles of edge computing, the model is deployed via Tensorflow.js in an edge device in the present study, constructing a recognition and statistical system for ruminating and feeding behavior of dairy cows. Through the application programming interface (API) of the browser, an edge device is able to invoke a camera and acquire dairy cow images. Then, the images can be inputted in the SSD MobileNet V2 model, which is followed by inference based on browser hashrate. Moreover, the edge device merely uploads recognition results to the cloud server for statistics, which features high instantaneity and compatibility. In terms of recognizing ruminating and feeding behavior of dairy cows, the proposed system has a precision ratio of 96.50%, a recall rate of 91.77%, an F1-score of 94.08%, specificity of 91.36%, and accuracy of 91.66%. This suggests that the proposed method is effective in recognizing dairy cow behavior.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining