{"title":"Cancer-Specific Nanomedicine Delivery Systems and the Role of the Tumor Microenvironment: A Critical Linkage","authors":"Debarupa Dutta Chakraborty, Prithviraj Chakraborty","doi":"10.2174/0124681873270736231024060618","DOIUrl":null,"url":null,"abstract":"Background:: The tumour microenvironment (TME) affects tumour development in a crucial way. Infinite stromal cells and extracellular matrices located in the tumour form complex tissues. The mature TME of epithelial-derived tumours exhibits common features irrespective of the tumour's anatomical locale. TME cells are subjected to hypoxia, oxidative stress, and acidosis, eliciting an extrinsic extracellular matrix (ECM) adjustment initiating responses by neighbouring stromal and immune cells (triggering angiogenesis and metastasis). Objective:: This report delivers challenges associated with targeting the TME for therapeutic pur-poses, technological advancement attempts to enhance understanding of the TME, and debate on strategies for intervening in the pro-tumour microenvironment to boost curative benefits. Conclusion:: Therapeutic targeting of TME has begun as an encouraging approach for cancer treatment owing to its imperative role in regulating tumour progression and modulating treatment response.","PeriodicalId":10818,"journal":{"name":"Current Nanomedicine","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0124681873270736231024060618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background:: The tumour microenvironment (TME) affects tumour development in a crucial way. Infinite stromal cells and extracellular matrices located in the tumour form complex tissues. The mature TME of epithelial-derived tumours exhibits common features irrespective of the tumour's anatomical locale. TME cells are subjected to hypoxia, oxidative stress, and acidosis, eliciting an extrinsic extracellular matrix (ECM) adjustment initiating responses by neighbouring stromal and immune cells (triggering angiogenesis and metastasis). Objective:: This report delivers challenges associated with targeting the TME for therapeutic pur-poses, technological advancement attempts to enhance understanding of the TME, and debate on strategies for intervening in the pro-tumour microenvironment to boost curative benefits. Conclusion:: Therapeutic targeting of TME has begun as an encouraging approach for cancer treatment owing to its imperative role in regulating tumour progression and modulating treatment response.