{"title":"Bayesian likelihood-based regression for estimation of optimal dynamic treatment regimes","authors":"Weichang Yu, Howard D Bondell","doi":"10.1093/jrsssb/qkad016","DOIUrl":null,"url":null,"abstract":"Abstract Clinicians often make sequences of treatment decisions that can be framed as dynamic treatment regimes. In this paper, we propose a Bayesian likelihood-based dynamic treatment regime model that incorporates regression specifications to yield interpretable relationships between covariates and stage-wise outcomes. We define a set of probabilistically-coherent properties for dynamic treatment regime processes and present the theoretical advantages that are consequential to these properties. We justify the likelihood-based approach by showing that it guarantees these probabilistically-coherent properties, whereas existing methods lead to process spaces that typically violate these properties and lead to modelling assumptions that are infeasible. Through a numerical study, we show that our proposed method can achieve superior performance over existing state-of-the-art methods.","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"352 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Clinicians often make sequences of treatment decisions that can be framed as dynamic treatment regimes. In this paper, we propose a Bayesian likelihood-based dynamic treatment regime model that incorporates regression specifications to yield interpretable relationships between covariates and stage-wise outcomes. We define a set of probabilistically-coherent properties for dynamic treatment regime processes and present the theoretical advantages that are consequential to these properties. We justify the likelihood-based approach by showing that it guarantees these probabilistically-coherent properties, whereas existing methods lead to process spaces that typically violate these properties and lead to modelling assumptions that are infeasible. Through a numerical study, we show that our proposed method can achieve superior performance over existing state-of-the-art methods.
期刊介绍:
Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.