{"title":"Use of Emerging C-H Functionalization Methods to Implement Strategies for the Divergent Total Syntheses of Bridged Polycyclic Natural Products","authors":"Goh Sennari, Richmond Sarpong","doi":"10.5059/yukigoseikyokaishi.81.1028","DOIUrl":null,"url":null,"abstract":"Carbon-hydrogen (C-H) bonds are ubiquitous in complex natural products. Over the past three decades, many methods to convert C-H bonds distal from functional groups, which were generally considered inert, have been developed. These advances now enable selective peripheral functionalizations at a late-stage. The direct engagement of traditionally unreactive C-H bonds in reactions expands chemical space by reducing functional group interconversions. As such, C-H functionalization serves as a powerful tool in medicinal and agrocultural chemistry as well as in the total synthesis of natural products where diversification to a broad array of compounds from a common intermediate is often desired. In this Account, we detail the thought processes and design principles that relied on emerging methods for C-H functionalization to prepare a wide range of bridged, polycyclic, natural products in the cephalotane and longibornane families from a common intermediate in each case.","PeriodicalId":17123,"journal":{"name":"Journal of Synthetic Organic Chemistry Japan","volume":"121 5","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synthetic Organic Chemistry Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5059/yukigoseikyokaishi.81.1028","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-hydrogen (C-H) bonds are ubiquitous in complex natural products. Over the past three decades, many methods to convert C-H bonds distal from functional groups, which were generally considered inert, have been developed. These advances now enable selective peripheral functionalizations at a late-stage. The direct engagement of traditionally unreactive C-H bonds in reactions expands chemical space by reducing functional group interconversions. As such, C-H functionalization serves as a powerful tool in medicinal and agrocultural chemistry as well as in the total synthesis of natural products where diversification to a broad array of compounds from a common intermediate is often desired. In this Account, we detail the thought processes and design principles that relied on emerging methods for C-H functionalization to prepare a wide range of bridged, polycyclic, natural products in the cephalotane and longibornane families from a common intermediate in each case.