Development of a laser preheating concept for directed energy deposition

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2023-10-20 DOI:10.2351/7.0001124
Fabian Bieg, David Scheider, Christian Kledwig, Clemens Maucher, Hans-Christian Möhring, Martin Reisacher
{"title":"Development of a laser preheating concept for directed energy deposition","authors":"Fabian Bieg, David Scheider, Christian Kledwig, Clemens Maucher, Hans-Christian Möhring, Martin Reisacher","doi":"10.2351/7.0001124","DOIUrl":null,"url":null,"abstract":"In today’s manufacturing, additive manufacturing processes enable the production of complicated three-dimensional structures that are hard to be manufactured with traditional manufacturing processes. Due to its high build rate, the laser-based directed energy deposition (DED-LB) process is an attractive and versatile process to manufacture these kinds of components. In addition to the production of components, DED-LB is used for repair or coating applications. The DED-LB process consists of a multitude of complex thermal mechanisms with high heating and cooling rates of 5 × 102 up to 5 × 105 K/s. For materials with high hardness or low thermal conductivity like tool steels, cast iron, or tungsten carbide, these high cooling rates can lead to defects in the microstructure like cracks, pores, or delamination between the substrate and the deposited structures. By preheating the substrate, the cooling rates can be reduced and defects can be eliminated. In this paper, a preheating cycle was developed, which uses the laser of a DMG MORI LT 65 DED hybrid machine as a moving heat source for the substrate preheating. For this cycle, process parameters, a tool path strategy, and a temperature control system were developed. The impact of the elaborated concept was shown by depositing tungsten carbide in a nickel matrix on an S235 steel substrate.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"22 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001124","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In today’s manufacturing, additive manufacturing processes enable the production of complicated three-dimensional structures that are hard to be manufactured with traditional manufacturing processes. Due to its high build rate, the laser-based directed energy deposition (DED-LB) process is an attractive and versatile process to manufacture these kinds of components. In addition to the production of components, DED-LB is used for repair or coating applications. The DED-LB process consists of a multitude of complex thermal mechanisms with high heating and cooling rates of 5 × 102 up to 5 × 105 K/s. For materials with high hardness or low thermal conductivity like tool steels, cast iron, or tungsten carbide, these high cooling rates can lead to defects in the microstructure like cracks, pores, or delamination between the substrate and the deposited structures. By preheating the substrate, the cooling rates can be reduced and defects can be eliminated. In this paper, a preheating cycle was developed, which uses the laser of a DMG MORI LT 65 DED hybrid machine as a moving heat source for the substrate preheating. For this cycle, process parameters, a tool path strategy, and a temperature control system were developed. The impact of the elaborated concept was shown by depositing tungsten carbide in a nickel matrix on an S235 steel substrate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定向能沉积激光预热概念的发展
在当今的制造业中,增材制造工艺能够生产出传统制造工艺难以制造的复杂三维结构。基于激光的定向能沉积(ed - lb)工艺由于其高构建率,是制造此类部件的一种有吸引力且通用的工艺。除了生产组件外,d - lb还用于修复或涂层应用。DED-LB过程由多种复杂的热机制组成,具有5 × 102至5 × 105 K/s的高加热和冷却速率。对于高硬度或低导热性的材料,如工具钢、铸铁或碳化钨,这些高冷却速度可能导致微观结构中的缺陷,如衬底和沉积结构之间的裂纹、孔隙或分层。通过预热基材,可以降低冷却速率并消除缺陷。本文提出了一种利用DMG MORI l65型DED混合机床的激光作为移动热源对基材进行预热的预热循环。针对该循环,开发了工艺参数、刀具轨迹策略和温度控制系统。通过在S235钢基体上沉积镍基体中的碳化钨,表明了阐述的概念的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Experimental evaluation of a WC–Co alloy layer formation process by multibeam-type laser metal deposition with blue diode lasers Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching Investigating the influence of thermal behavior on microstructure during solidification in laser powder bed fusion of AlSi10Mg alloys: A phase-field analysis High-power fiber-coupled diode laser welding of 10-mm thick Inconel 617 superalloy Influence of temperature and beam size on weld track shape in laser powder bed fusion of pure copper using near-infrared laser system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1