Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2023-12-21 DOI:10.2351/7.0001149
P. Warneke, A. Bohlen, T. Seefeld
{"title":"Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching","authors":"P. Warneke, A. Bohlen, T. Seefeld","doi":"10.2351/7.0001149","DOIUrl":null,"url":null,"abstract":"Skin-pass rolls are used for setting the final sheet thickness and surface texture. For sheet metal that is produced for forming, textured skin-pass rolls featuring a high-low structure are used in order to improve the formability and paint adhesion of the sheet. In this paper, new textures for skin-pass rolls generated by high-speed laser melt injection (HSLMI) are presented and characterized. Furthermore, it is studied how the texture of the roll is transferred to steel and aluminum sheets. With HSLMI, metal matrix composite (MMC) layers featuring spherical fused tungsten carbide (SFTC) particles with a high hardness could be produced on skin-pass rolls. For generating an increased high-low structure, laser ablation and electrolytic etching were carried out after HSLMI and grinding of the rolls. An analysis of the topography showed that different protruding heights between SFTC particles and matrix can be set. The textures generated by laser ablation showed a topography featuring two homogeneous height levels, whereas a texture with spherically shaped particles could be generated by electrolytic etching. Furthermore, it was found that all textures were transferred from the roll to both steel and aluminum sheets. The transfer of the textures mainly depended on the protruding height of the SFTC particles and the SFTC particle content of the roll.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin-pass rolls are used for setting the final sheet thickness and surface texture. For sheet metal that is produced for forming, textured skin-pass rolls featuring a high-low structure are used in order to improve the formability and paint adhesion of the sheet. In this paper, new textures for skin-pass rolls generated by high-speed laser melt injection (HSLMI) are presented and characterized. Furthermore, it is studied how the texture of the roll is transferred to steel and aluminum sheets. With HSLMI, metal matrix composite (MMC) layers featuring spherical fused tungsten carbide (SFTC) particles with a high hardness could be produced on skin-pass rolls. For generating an increased high-low structure, laser ablation and electrolytic etching were carried out after HSLMI and grinding of the rolls. An analysis of the topography showed that different protruding heights between SFTC particles and matrix can be set. The textures generated by laser ablation showed a topography featuring two homogeneous height levels, whereas a texture with spherically shaped particles could be generated by electrolytic etching. Furthermore, it was found that all textures were transferred from the roll to both steel and aluminum sheets. The transfer of the textures mainly depended on the protruding height of the SFTC particles and the SFTC particle content of the roll.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过高速激光熔体喷射、激光烧蚀和电解蚀刻对皮辊进行纹理加工
蒙皮辊用于设定最终板材厚度和表面纹理。对于为成型而生产的金属板材,使用具有高低结构的纹理蒙皮辊可提高板材的成型性和涂料附着力。本文介绍了通过高速激光熔体喷射(HSLMI)生成的表皮辊的新纹理,并对其进行了表征。此外,还研究了如何将轧辊纹理转移到钢板和铝板上。通过 HSLMI,可以在皮辊上生产出具有高硬度球形熔融碳化钨(SFTC)颗粒的金属基复合材料(MMC)层。为了生成更高的高低结构,在 HSLMI 和磨削轧辊后进行了激光烧蚀和电解蚀刻。对形貌的分析表明,可以在 SFTC 颗粒和基体之间设置不同的突出高度。激光烧蚀产生的纹理具有两个均匀高度的地形,而电解蚀刻产生的纹理具有球形颗粒。此外,还发现所有纹理都能从轧辊转移到钢板和铝板上。纹理的转移主要取决于 SFTC 粒子的突出高度和轧辊中 SFTC 粒子的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Research on a visual positioning method of paddy field weeding wheels based on laser rangefinder-camera calibration New thermal solver for mitigating surface temperature instability in laser-induced heating Statistical modeling and optimization of clad geometry in laser cladding of Amdry 961 on Inconel 713LC superalloy with response surface methodology Novel path planning algorithm for laser powder bed fusion to improve the scan quality of triply periodic minimal surface structures Laser hazard classification of a line laser with an astigmatic extended source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1