Dynamic Analysis of Three Alternative Mooring Systems for a Semi-submersible Wind Turbine in Intermediate Water Depth

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme Pub Date : 2023-10-20 DOI:10.1115/1.4063854
Qun Cao, Zhengshun Cheng, Longfei Xiao, Mingyue Liu
{"title":"Dynamic Analysis of Three Alternative Mooring Systems for a Semi-submersible Wind Turbine in Intermediate Water Depth","authors":"Qun Cao, Zhengshun Cheng, Longfei Xiao, Mingyue Liu","doi":"10.1115/1.4063854","DOIUrl":null,"url":null,"abstract":"Abstract Three forms of mooring system in 60 m water depth are proposed for SPIC (Semi-submersible with Partially Inclined Columns) concept FWT (Floating Wind Turbine). One is a simple form with only catenary lines, and the others are hybrid forms including clump weights. The clumps are attached to the suspended section for Hybrid form1 and the bottom section for Hybrid form2. Hybrid form2 achieves the smallest line length and chain weight. Three proposals can be evaluated through mooring line characteristics, dynamic responses, utilization factors and cost analysis. Hybrid form2 allows for smallest pretension, and largest stiffness and nonlinearity only at large offsets. Under operational conditions, the mean surge for Hybrid form1 and Hybrid form2 is similar, but the fairlead tension is significantly smaller for Hybrid form2. Under survival condition, the clumps of Hybrid form2 are lifted up and put down, leading to large wave-frequency components of line tension. Among the three forms, the hybrid form2 can limit the FWT to the smallest offset range while also controlling the mean line tension to a level similar to the other two forms. Under normal working conditions and accidental conditions with single line broken, the maximal surge motions of FWT under the restraint of three forms all meet the design requirements. The mooring line strength of the three forms meets the requirements in ULS (ultimate limit state) and ALS (accidental limit state) analysis. Among them, the utilization coefficient of Hybrid form2 is closest to 1, demonstrating its best economic performance.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"2 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063854","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Three forms of mooring system in 60 m water depth are proposed for SPIC (Semi-submersible with Partially Inclined Columns) concept FWT (Floating Wind Turbine). One is a simple form with only catenary lines, and the others are hybrid forms including clump weights. The clumps are attached to the suspended section for Hybrid form1 and the bottom section for Hybrid form2. Hybrid form2 achieves the smallest line length and chain weight. Three proposals can be evaluated through mooring line characteristics, dynamic responses, utilization factors and cost analysis. Hybrid form2 allows for smallest pretension, and largest stiffness and nonlinearity only at large offsets. Under operational conditions, the mean surge for Hybrid form1 and Hybrid form2 is similar, but the fairlead tension is significantly smaller for Hybrid form2. Under survival condition, the clumps of Hybrid form2 are lifted up and put down, leading to large wave-frequency components of line tension. Among the three forms, the hybrid form2 can limit the FWT to the smallest offset range while also controlling the mean line tension to a level similar to the other two forms. Under normal working conditions and accidental conditions with single line broken, the maximal surge motions of FWT under the restraint of three forms all meet the design requirements. The mooring line strength of the three forms meets the requirements in ULS (ultimate limit state) and ALS (accidental limit state) analysis. Among them, the utilization coefficient of Hybrid form2 is closest to 1, demonstrating its best economic performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半潜式风力机三种备选系泊系统在中等水深下的动力分析
摘要针对浮动式风力发电机组(SPIC)提出了三种60 m水深系泊系统。一种是只有悬链线的简单形式,另一种是包含团权的混合形式。团块附着在Hybrid form1的悬浮部分和Hybrid form2的底部部分。混合形式2实现最小的线长和链重。通过系泊线特性、动力响应、利用因素和成本分析对三种方案进行评价。混合形式2允许最小的预张力,最大的刚度和非线性只在大偏移量。在工作条件下,混合形式1和混合形式2的平均浪涌相似,但混合形式2的导联张力明显较小。在存活条件下,杂化形式2的团块被上下抬升,导致线张力的波频分量较大。在三种形式中,混合形式2可以将FWT限制在最小的偏移范围内,同时也可以将平均线张力控制在与其他两种形式相似的水平。在正常工况和单线断线事故工况下,三种形式约束下FWT的最大喘振运动均满足设计要求。三种形式的系泊线强度均满足ULS(极限状态)和ALS(意外极限状态)分析的要求。其中,Hybrid形式2的利用系数最接近于1,表现出最佳的经济性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
期刊最新文献
PEridynamic Analysis of Tubular Joints of Offshore Jacket Structure Underwater impulsive response of sandwich structure with multilayer foam core Numerical Study on the Automatic Ballast Control of a Floating Dock Gravity wave interaction with a composite pile-rock breakwater Modelling Green Water Load on A Deck Mounted Circular Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1