Min Gao, Scott Draper, Guy McCauley, Lifen Chen, Xiantao Zhang, Hugh Wolgamot, Paul Taylor, Liang Cheng
{"title":"Modelling Green Water Load on A Deck Mounted Circular Cylinder","authors":"Min Gao, Scott Draper, Guy McCauley, Lifen Chen, Xiantao Zhang, Hugh Wolgamot, Paul Taylor, Liang Cheng","doi":"10.1115/1.4063807","DOIUrl":null,"url":null,"abstract":"Abstract This article uses scaled physical and numerical modeling to investigate an idealized but complicated problem in which green water impacts a circular cylindrical structure located on top of a fixed box representative of a vessel. A focused wave group was used to overtop the box and generate the green water event, which resembled a plunging wave with air entrainment. The plunger collapsed and ran across the deck before impacting and then scattering from the cylinder. To test the adequacy of the physical modeling, nominally identical experiments were conducted in two different laboratories, in different countries. The numerical modeling comprised computational fluid dynamics (CFD) simulations performed using openfoam. The flow features, the force on the cylinder, and the surface elevation on top of the box are compared in detail across the two physical models and the CFD. Consistent load measurements were obtained from the two physical model tests, with force impulse results differing by less than 10%, underscoring the validity of the results, even accounting for the complexity of flow–structure interactions. A comparison with numerical model results reveals some sensitivity to experimental precision in the flow measurements on top of the box and the green water load. Nonetheless, the overall force impulse discrepancy between experiments and numerical models is within 15%, highlighting that the robustness of the methods was used despite these sensitivities. The sensitivity to CFD mesh and iterating the incident wave to match CFD and experiment are also explored. The agreement between experiment and CFD serves as an example of the utility of CFD for modeling green water loads.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"24 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063807","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This article uses scaled physical and numerical modeling to investigate an idealized but complicated problem in which green water impacts a circular cylindrical structure located on top of a fixed box representative of a vessel. A focused wave group was used to overtop the box and generate the green water event, which resembled a plunging wave with air entrainment. The plunger collapsed and ran across the deck before impacting and then scattering from the cylinder. To test the adequacy of the physical modeling, nominally identical experiments were conducted in two different laboratories, in different countries. The numerical modeling comprised computational fluid dynamics (CFD) simulations performed using openfoam. The flow features, the force on the cylinder, and the surface elevation on top of the box are compared in detail across the two physical models and the CFD. Consistent load measurements were obtained from the two physical model tests, with force impulse results differing by less than 10%, underscoring the validity of the results, even accounting for the complexity of flow–structure interactions. A comparison with numerical model results reveals some sensitivity to experimental precision in the flow measurements on top of the box and the green water load. Nonetheless, the overall force impulse discrepancy between experiments and numerical models is within 15%, highlighting that the robustness of the methods was used despite these sensitivities. The sensitivity to CFD mesh and iterating the incident wave to match CFD and experiment are also explored. The agreement between experiment and CFD serves as an example of the utility of CFD for modeling green water loads.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.