{"title":"Novel exact solution of elastic catenary and applications on floating wind turbine mooring systems","authors":"Pengpeng Xu, Xing Chang, Yuan E. Liu","doi":"10.1115/1.4063852","DOIUrl":null,"url":null,"abstract":"Abstract This research addresses the mathematical solution of the elastic catenary, a fundamental problem in offshore mooring engineering. A novel exact solution in a non-Lagrangian form is developed through rigorous mathematical derivation, distinguishing it from classical Lagrangian solutions. The procedure is described in detail, and the resulting expressions are applied to analyze the mooring system of a reference floating turbine. A general analytical approach is introduced to solve the transcendental equations associated with catenary mooring problems. The newly derived formulae exhibit greater applicability to geometry-to-force problems compared to existing Lagrangian expressions, making them particularly valuable for conceptual design and front-end engineering. In summary, this work provides valuable new insights into the exact solution of the elastic catenary, enhancing understanding and enabling practical applications in the field of floating wind turbines.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"3 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063852","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This research addresses the mathematical solution of the elastic catenary, a fundamental problem in offshore mooring engineering. A novel exact solution in a non-Lagrangian form is developed through rigorous mathematical derivation, distinguishing it from classical Lagrangian solutions. The procedure is described in detail, and the resulting expressions are applied to analyze the mooring system of a reference floating turbine. A general analytical approach is introduced to solve the transcendental equations associated with catenary mooring problems. The newly derived formulae exhibit greater applicability to geometry-to-force problems compared to existing Lagrangian expressions, making them particularly valuable for conceptual design and front-end engineering. In summary, this work provides valuable new insights into the exact solution of the elastic catenary, enhancing understanding and enabling practical applications in the field of floating wind turbines.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.