Robust Received Signal Strength Indicator (RSSI)-Based Multitarget Localization via Gaussian Process Regression

Niclas Führling;Hyeon Seok Rou;Giuseppe Thadeu Freitas de Abreu;David González G.;Osvaldo Gonsa
{"title":"Robust Received Signal Strength Indicator (RSSI)-Based Multitarget Localization via Gaussian Process Regression","authors":"Niclas Führling;Hyeon Seok Rou;Giuseppe Thadeu Freitas de Abreu;David González G.;Osvaldo Gonsa","doi":"10.1109/JISPIN.2023.3332033","DOIUrl":null,"url":null,"abstract":"We consider the robust localization, via Gaussian process regression (GPR), of multiple transmitters/targets based on received signal strength indicator (RSSI) data collected by fixed sensors distributed in the environment. For such a scenario and approach, we contribute both with a novel noise robust procedure to train the parameters of the GPR model, which is achieved via a mini-batch stochastic gradient descent (SGD) scheme with gradients given in closed form, and with a pair of corresponding robust marginalization procedures for the estimation of target locations. Simulation results validate the contributions by showing that the proposed methods significantly outperform the best related state-of-the-art (SotA) alternative and approach the performance of a genie-aided (GA) scheme.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"1 ","pages":"104-114"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10314734","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10314734/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the robust localization, via Gaussian process regression (GPR), of multiple transmitters/targets based on received signal strength indicator (RSSI) data collected by fixed sensors distributed in the environment. For such a scenario and approach, we contribute both with a novel noise robust procedure to train the parameters of the GPR model, which is achieved via a mini-batch stochastic gradient descent (SGD) scheme with gradients given in closed form, and with a pair of corresponding robust marginalization procedures for the estimation of target locations. Simulation results validate the contributions by showing that the proposed methods significantly outperform the best related state-of-the-art (SotA) alternative and approach the performance of a genie-aided (GA) scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒接收信号强度指标的高斯过程回归多目标定位
我们考虑了基于分布在环境中的固定传感器收集的接收信号强度指标(RSSI)数据,通过高斯过程回归(GPR)对多个发射机/目标进行鲁棒定位。对于这样的场景和方法,我们提供了一种新的噪声鲁棒程序来训练GPR模型的参数,这是通过具有封闭形式的梯度的小批量随机梯度下降(SGD)方案实现的,以及一对相应的鲁棒边缘化程序来估计目标位置。仿真结果验证了本文的贡献,表明所提出的方法显著优于最佳相关最先进(SotA)替代方案,并接近基因辅助(GA)方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information Enhancing Indoor Localization Accuracy in Dense IoT-Integrated 5GNR Networks: Introducing SGNCL for Sensor-Guided NLoS Correction Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1