The role of Cu doping in properties of CdZnS thin films

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Chalcogenide Letters Pub Date : 2023-11-01 DOI:10.15251/cl.2023.2011.789
K. A. Mohammed, R. A. Talib, B. Bhavani, N. H. J. Al Hasan, A. Kareem, F. H. Alsultany, R. S. Zabibah, M. A. Alkhafaji, S. Sharma
{"title":"The role of Cu doping in properties of CdZnS thin films","authors":"K. A. Mohammed, R. A. Talib, B. Bhavani, N. H. J. Al Hasan, A. Kareem, F. H. Alsultany, R. S. Zabibah, M. A. Alkhafaji, S. Sharma","doi":"10.15251/cl.2023.2011.789","DOIUrl":null,"url":null,"abstract":"CdZnS thin films created via chemical bath deposition were examined to see how Cu doping affected their characteristics. Cu ions were added to the films in order to change their optical, structural, and morphological characteristics. These findings suggest that Cu doping can be used to modify the optical characteristics of CdZnS thin films. By using Xray diffraction (XRD) and the energy dispersive analysis of X-ray method (EDAX), we were able to investigate the compositional ratio as well as the structural features of the films. The field emission scanning electron microscopy (FESEM) technique was utilized in order to investigate the surface morphology of the produced films. The morphology of prepared films was fiber-like and in nanoscale. In addition, the UV–vis spectroscopy technique was utilized in order to characterize the optical properties of thin films. The prepared Cu-CdZnS film was found to have direct band gap equal to 2.64 eV and indirect gap equal to 2.4 eV.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":"2010 10","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/cl.2023.2011.789","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CdZnS thin films created via chemical bath deposition were examined to see how Cu doping affected their characteristics. Cu ions were added to the films in order to change their optical, structural, and morphological characteristics. These findings suggest that Cu doping can be used to modify the optical characteristics of CdZnS thin films. By using Xray diffraction (XRD) and the energy dispersive analysis of X-ray method (EDAX), we were able to investigate the compositional ratio as well as the structural features of the films. The field emission scanning electron microscopy (FESEM) technique was utilized in order to investigate the surface morphology of the produced films. The morphology of prepared films was fiber-like and in nanoscale. In addition, the UV–vis spectroscopy technique was utilized in order to characterize the optical properties of thin films. The prepared Cu-CdZnS film was found to have direct band gap equal to 2.64 eV and indirect gap equal to 2.4 eV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu掺杂对CdZnS薄膜性能的影响
通过化学浴沉积法制备了CdZnS薄膜,考察了Cu掺杂对薄膜特性的影响。在薄膜中加入Cu离子以改变其光学、结构和形态特征。这些发现表明,Cu掺杂可以用来修饰CdZnS薄膜的光学特性。利用x射线衍射仪(XRD)和x射线能谱仪(EDAX)分析了薄膜的组成比和结构特征。利用场发射扫描电子显微镜(FESEM)技术对所制备薄膜的表面形貌进行了研究。制备的薄膜具有纤维状和纳米级的形貌。此外,利用紫外可见光谱技术对薄膜的光学性质进行了表征。Cu-CdZnS薄膜的直接带隙为2.64 eV,间接带隙为2.4 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chalcogenide Letters
Chalcogenide Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.80
自引率
20.00%
发文量
86
审稿时长
1 months
期刊介绍: Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and appears with twelve issues per year. The journal is open to letters, short communications and breakings news inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in structure, properties and applications, as well as those covering special properties in nano-structured chalcogenides are admitted.
期刊最新文献
Thermal conductivity and lattice dynamics of thermoelectric oxychalcogenide BiCuTeO Retraction notice: Optimization of chemical bath deposited CdSSe thin films Enhancement efficiency of cadmium selenium solar cell by doping within silver Steady-state and transient photocurrents of As-S-Sb-Te amorphous thin films Nucleation and growth study of SnS nanostructures prepared by electrodeposition method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1