Experimental Investigation on an Algorithm for Testing the Quality of Powder Distribution During 3D Printing Process

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY Advances in Science and Technology-Research Journal Pub Date : 2023-10-20 DOI:10.12913/22998624/171809
Marcin Korzeniowski, Aleksandra Małachowska, Mateusz Biały, Maria Kanczewska, Michał Tkaczyk, Krzysztof Grajczyk
{"title":"Experimental Investigation on an Algorithm for Testing the Quality of Powder Distribution During 3D Printing Process","authors":"Marcin Korzeniowski, Aleksandra Małachowska, Mateusz Biały, Maria Kanczewska, Michał Tkaczyk, Krzysztof Grajczyk","doi":"10.12913/22998624/171809","DOIUrl":null,"url":null,"abstract":"Metal 3D printing is a modern manufacturing process that allows the production of geometrically complex structures from metallic powders of varying chemical composition. This paper shows the results of testing the powder feeding and distribution system of the developed 3D printer. The device using the SLM method (Selected Laser Melting) was developed by research team of WroclawTech and used in this investigation. The powder feeding and distribution system was tested using a vision system integrated into the printer control system. Thousands of tests performed made it possible to identify the reasons corresponding to incorrect powder distribution on the working field. In addition, a quality control algorithm was developed and implemented in the MatLab environment. Algo - rithms based on image analysis automatically identifies powder distributed in an unacceptable way. An 88% accu - racy rate was achieved for identifying defects in all images within a dataset of 600 pictures, classified into follow - ing categories OK and NOK consisting of: recoater streaking, recoater hopping, super-elevation. The strength of the algorithm developed lies in its utilization of variations in shades of gray, rather than solely relying on the actual gray values. This approach grants the algorithm a certain degree of adaptability to changing lighting conditions.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/171809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal 3D printing is a modern manufacturing process that allows the production of geometrically complex structures from metallic powders of varying chemical composition. This paper shows the results of testing the powder feeding and distribution system of the developed 3D printer. The device using the SLM method (Selected Laser Melting) was developed by research team of WroclawTech and used in this investigation. The powder feeding and distribution system was tested using a vision system integrated into the printer control system. Thousands of tests performed made it possible to identify the reasons corresponding to incorrect powder distribution on the working field. In addition, a quality control algorithm was developed and implemented in the MatLab environment. Algo - rithms based on image analysis automatically identifies powder distributed in an unacceptable way. An 88% accu - racy rate was achieved for identifying defects in all images within a dataset of 600 pictures, classified into follow - ing categories OK and NOK consisting of: recoater streaking, recoater hopping, super-elevation. The strength of the algorithm developed lies in its utilization of variations in shades of gray, rather than solely relying on the actual gray values. This approach grants the algorithm a certain degree of adaptability to changing lighting conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D打印过程中粉末分布质量检测算法的实验研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
期刊最新文献
Investigation of a Shock Freezing Concept with Additional Electromagnetic Field Exposure Literature Review of Applicable Ballistic Materials for Temporary Wooden Building Envelopes Utilization of Levoglucosan Production By-Products Development of a Performance-Based Specification Model of Combat Clothing for the Procurement Process in Estonia Manufacturing of Bioactive Biodegradable Scaffolds by Stereolithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1