Comparative Investigation of Yield and Quality of Carbon Nanotubes by Catalytic Conversion of Recycled Polypropylene and Polyethylene Plastics over Fe-Co-Mo/CaCO<sub>3</sub> Based on Chemical Vapour Deposition

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY Advances in Science and Technology-Research Journal Pub Date : 2023-10-20 DOI:10.12913/22998624/169133
Matthew Adah Onu, Olusola Olaitan Ayeleru, Bilainu Oboirien, Peter Apata Olubambi
{"title":"Comparative Investigation of Yield and Quality of Carbon Nanotubes by Catalytic Conversion of Recycled Polypropylene and Polyethylene Plastics over Fe-Co-Mo/CaCO&lt;sub&gt;3&lt;/sub&gt; Based on Chemical Vapour Deposition","authors":"Matthew Adah Onu, Olusola Olaitan Ayeleru, Bilainu Oboirien, Peter Apata Olubambi","doi":"10.12913/22998624/169133","DOIUrl":null,"url":null,"abstract":"Polypropylene (PP) and polyethylene (PE) plastic waste is accumulating in the environment and the oceans at an alarming rate. The current management methods, mostly landfilling and incineration, are becoming unsustainable. In this study, thermal catalytic conversion of waste PP and PE polymers into carbon nanotubes (CNTs) using a trimetallic catalyst prepared from the nitrate salts of iron, cobalt, and molybdenum supported with calcium carbonate was reported. The yield and quality of multi-walled carbon nanotubes (MWCNTs) produced were investigated. The findings showed a high graphitic value for the CNTs obtained from PP and PE, as corroborated by the d-spacing of XRD. The I D /I G ratio of CNTs synthesized from PP and PE as carbon sources were 0.6724 and 0.9028, respectively, which showed that CNT produced from PP has more ordered graphite. The functional groups present in the produced CNTs were determined via FITR analysis. The BET and Langmuir surface areas were found to be (6.834 and 70.468 m 2 /g) and (6.733 and 70.347 m 2 /g) for CNTs obtained from PP and PE respectively. The d-spacing was computed as 0.3425 nm and 0.3442 nm for CNTs made from PP and PE. These fall within the graphite’s d-spacing at 0.335 nm. The TGA showed high percentage purity of 94.71 and 94.40% for the products obtained from PP and PE, respectively. The findings showed that recycled PP and PE could be good alternative carbon sources for CNT production.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":"85 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/169133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polypropylene (PP) and polyethylene (PE) plastic waste is accumulating in the environment and the oceans at an alarming rate. The current management methods, mostly landfilling and incineration, are becoming unsustainable. In this study, thermal catalytic conversion of waste PP and PE polymers into carbon nanotubes (CNTs) using a trimetallic catalyst prepared from the nitrate salts of iron, cobalt, and molybdenum supported with calcium carbonate was reported. The yield and quality of multi-walled carbon nanotubes (MWCNTs) produced were investigated. The findings showed a high graphitic value for the CNTs obtained from PP and PE, as corroborated by the d-spacing of XRD. The I D /I G ratio of CNTs synthesized from PP and PE as carbon sources were 0.6724 and 0.9028, respectively, which showed that CNT produced from PP has more ordered graphite. The functional groups present in the produced CNTs were determined via FITR analysis. The BET and Langmuir surface areas were found to be (6.834 and 70.468 m 2 /g) and (6.733 and 70.347 m 2 /g) for CNTs obtained from PP and PE respectively. The d-spacing was computed as 0.3425 nm and 0.3442 nm for CNTs made from PP and PE. These fall within the graphite’s d-spacing at 0.335 nm. The TGA showed high percentage purity of 94.71 and 94.40% for the products obtained from PP and PE, respectively. The findings showed that recycled PP and PE could be good alternative carbon sources for CNT production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe-Co-Mo/CaCO<sub>3</sub>催化再生聚丙烯和聚乙烯塑料转化碳纳米管收率和质量的比较研究基于化学气相沉积
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
期刊最新文献
Investigation of a Shock Freezing Concept with Additional Electromagnetic Field Exposure Literature Review of Applicable Ballistic Materials for Temporary Wooden Building Envelopes Utilization of Levoglucosan Production By-Products Development of a Performance-Based Specification Model of Combat Clothing for the Procurement Process in Estonia Manufacturing of Bioactive Biodegradable Scaffolds by Stereolithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1