{"title":"The theory of generalised hydrodynamics for the one-dimensional Bose gas","authors":"Matthew L. Kerr, Karen V. Kheruntsyan","doi":"10.1007/s43673-023-00095-2","DOIUrl":null,"url":null,"abstract":"<div><p>This article reviews the recent developments in the theory of generalised hydrodynamics (GHD) with emphasis on the repulsive one-dimensional Bose gas. We discuss the implications of GHD on the mechanisms of thermalisation in integrable quantum many-body systems as well as its ability to describe far-from-equilibrium behaviour of integrable and near-integrable systems in a variety of quantum quench scenarios. We outline the experimental tests of GHD in cold-atom gases and its benchmarks with other microscopic theoretical approaches. Finally, we offer some perspectives on the future direction of the development of GHD.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00095-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00095-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article reviews the recent developments in the theory of generalised hydrodynamics (GHD) with emphasis on the repulsive one-dimensional Bose gas. We discuss the implications of GHD on the mechanisms of thermalisation in integrable quantum many-body systems as well as its ability to describe far-from-equilibrium behaviour of integrable and near-integrable systems in a variety of quantum quench scenarios. We outline the experimental tests of GHD in cold-atom gases and its benchmarks with other microscopic theoretical approaches. Finally, we offer some perspectives on the future direction of the development of GHD.