Amílcar Soares, Rúben Nunes, Paulo Salvadoretti, João Felipe Costa, Teresa Martins, Mario Santos, Leonardo Azevedo
{"title":"Pore Pressure Uncertainty Characterization Coupling Machine Learning and Geostatistical Modelling","authors":"Amílcar Soares, Rúben Nunes, Paulo Salvadoretti, João Felipe Costa, Teresa Martins, Mario Santos, Leonardo Azevedo","doi":"10.1007/s11004-023-10102-9","DOIUrl":null,"url":null,"abstract":"Abstract Pore pressure prediction is fundamental when drilling deep and geologically complex reservoirs. Even in relatively well-characterized hydrocarbon reservoir fields, with a considerable number of drilled wells, when located in challenging geological environments, poor prediction of abnormal pore pressure might result in catastrophic events that can cause harm to human lives and infrastructures. To better quantify drilling risks, the uncertainty associated with the pore pressure prediction should be integrated within the geo-modelling workflow. Leveraging a challenging real case from the Brazilian pre-salt, the work presented herein proposes a seismic-driven gradient pore pressure modelling workflow, which combines machine learning and geostatistical co-simulation to predict high-resolution gradient pore pressure volumes. First, existing angle-dependent seismic reflection data are inverted for P- and S-wave velocity and density. Then, K-nearest neighbor is used to create a regression model between pore pressure gradient and P- and S-wave velocity, density and depth based on the well log information. The trained model is applied to predict a three-dimensional gradient pore pressure model from the models obtained from geostatistical seismic inversion. This gradient pore pressure model is a smooth representation of the highly variable subsurface and is used as secondary variable in stochastic sequential co-simulation with joint probability distributions to generate multiple high-resolution realizations of gradient pore pressure. The ensemble of co-simulated models can be used to assess the spatial uncertainty about the gradient pore pressure predictions. The results of the application example show the ability of the method to reproduce the spatial patterns observed in the seismic data and to reproduce existing gradient pore pressure well logs at two blind well locations, which were not used to condition the gradient pore pressure predictions.","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"70 3","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11004-023-10102-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Pore pressure prediction is fundamental when drilling deep and geologically complex reservoirs. Even in relatively well-characterized hydrocarbon reservoir fields, with a considerable number of drilled wells, when located in challenging geological environments, poor prediction of abnormal pore pressure might result in catastrophic events that can cause harm to human lives and infrastructures. To better quantify drilling risks, the uncertainty associated with the pore pressure prediction should be integrated within the geo-modelling workflow. Leveraging a challenging real case from the Brazilian pre-salt, the work presented herein proposes a seismic-driven gradient pore pressure modelling workflow, which combines machine learning and geostatistical co-simulation to predict high-resolution gradient pore pressure volumes. First, existing angle-dependent seismic reflection data are inverted for P- and S-wave velocity and density. Then, K-nearest neighbor is used to create a regression model between pore pressure gradient and P- and S-wave velocity, density and depth based on the well log information. The trained model is applied to predict a three-dimensional gradient pore pressure model from the models obtained from geostatistical seismic inversion. This gradient pore pressure model is a smooth representation of the highly variable subsurface and is used as secondary variable in stochastic sequential co-simulation with joint probability distributions to generate multiple high-resolution realizations of gradient pore pressure. The ensemble of co-simulated models can be used to assess the spatial uncertainty about the gradient pore pressure predictions. The results of the application example show the ability of the method to reproduce the spatial patterns observed in the seismic data and to reproduce existing gradient pore pressure well logs at two blind well locations, which were not used to condition the gradient pore pressure predictions.
期刊介绍:
Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.