Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm

IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Mathematical Geosciences Pub Date : 2024-09-16 DOI:10.1007/s11004-024-10157-2
Michael Tetteh, Liangping Li, Matthew Minnick, Haiyan Zhou, Zhi Ye
{"title":"Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm","authors":"Michael Tetteh, Liangping Li, Matthew Minnick, Haiyan Zhou, Zhi Ye","doi":"10.1007/s11004-024-10157-2","DOIUrl":null,"url":null,"abstract":"<p>Borehole thermal energy storage (BTES) represents cutting-edge technology harnessing the Earth’s subsurface to store and extract thermal energy for heating and cooling purposes. Achieving optimal performance in BTES systems relies heavily on selecting the right operational parameters. Among these parameters, charging and discharging flow rates play a significant role in determining the amount of heat that can be effectively recovered from the system. In this study, we introduce a genetic algorithm as an optimization tool aimed at fine-tuning these operational parameters within a baseline BTES model. The BTES model was developed using FEFLOW software and simulated over a 3-year period. After each 3-year simulation, the genetic algorithm iteratively adjusted the operational parameters to attain the optimal configuration for maximizing heat recovery from the BTES system. Additional analysis was conducted to explore the impact of BTES system size and borehole spacing on heat recovery. Results indicate that the genetic algorithm effectively optimized parameters, leading to enhanced heat recovery efficiency. Moreover, the scenario studies highlighted that closer borehole spacing correlates with higher recovery efficiency.</p>","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"5 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10157-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Borehole thermal energy storage (BTES) represents cutting-edge technology harnessing the Earth’s subsurface to store and extract thermal energy for heating and cooling purposes. Achieving optimal performance in BTES systems relies heavily on selecting the right operational parameters. Among these parameters, charging and discharging flow rates play a significant role in determining the amount of heat that can be effectively recovered from the system. In this study, we introduce a genetic algorithm as an optimization tool aimed at fine-tuning these operational parameters within a baseline BTES model. The BTES model was developed using FEFLOW software and simulated over a 3-year period. After each 3-year simulation, the genetic algorithm iteratively adjusted the operational parameters to attain the optimal configuration for maximizing heat recovery from the BTES system. Additional analysis was conducted to explore the impact of BTES system size and borehole spacing on heat recovery. Results indicate that the genetic algorithm effectively optimized parameters, leading to enhanced heat recovery efficiency. Moreover, the scenario studies highlighted that closer borehole spacing correlates with higher recovery efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遗传算法优化钻孔热能存储系统
钻孔热能储存(BTES)是利用地球地下储存和提取热能用于供暖和制冷的尖端技术。要使 BTES 系统达到最佳性能,在很大程度上取决于选择正确的运行参数。在这些参数中,充放电流速在决定系统能有效回收的热量方面起着重要作用。在本研究中,我们引入了遗传算法作为优化工具,旨在对基准 BTES 模型中的这些运行参数进行微调。BTES 模型使用 FEFLOW 软件开发,并进行了为期 3 年的模拟。每次 3 年模拟后,遗传算法都会反复调整运行参数,以达到最佳配置,最大限度地提高 BTES 系统的热回收率。此外,还进行了其他分析,以探讨 BTES 系统的大小和钻孔间距对热回收的影响。结果表明,遗传算法有效地优化了参数,提高了热回收效率。此外,情景研究突出表明,钻孔间距越近,回收效率越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Geosciences
Mathematical Geosciences 地学-地球科学综合
CiteScore
5.30
自引率
15.40%
发文量
50
审稿时长
>12 weeks
期刊介绍: Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.
期刊最新文献
Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification Quantifying and Analyzing the Uncertainty in Fault Interpretation Using Entropy Robust Optimization Using the Mean Model with Bias Correction From Fault Likelihood to Fault Networks: Stochastic Seismic Interpretation Through a Marked Point Process with Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1