Identifying Important Pairwise Logratios in Compositional Data with Sparse Principal Component Analysis.

IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Mathematical Geosciences Pub Date : 2025-01-01 Epub Date: 2024-10-10 DOI:10.1007/s11004-024-10159-0
Viktorie Nesrstová, Ines Wilms, Karel Hron, Peter Filzmoser
{"title":"Identifying Important Pairwise Logratios in Compositional Data with Sparse Principal Component Analysis.","authors":"Viktorie Nesrstová, Ines Wilms, Karel Hron, Peter Filzmoser","doi":"10.1007/s11004-024-10159-0","DOIUrl":null,"url":null,"abstract":"<p><p>Compositional data are characterized by the fact that their elemental information is contained in simple pairwise logratios of the parts that constitute the composition. While pairwise logratios are typically easy to interpret, the number of possible pairs to consider quickly becomes too large even for medium-sized compositions, which may hinder interpretability in further multivariate analysis. Sparse methods can therefore be useful for identifying a few important pairwise logratios (and parts contained in them) from the total candidate set. To this end, we propose a procedure based on the construction of all possible pairwise logratios and employ sparse principal component analysis to identify important pairwise logratios. The performance of the procedure is demonstrated with both simulated and real-world data. In our empirical analysis, we propose three visual tools showing (i) the balance between sparsity and explained variability, (ii) the stability of the pairwise logratios, and (iii) the importance of the original compositional parts to aid practitioners in their model interpretation.</p>","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"57 2","pages":"333-358"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10159-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compositional data are characterized by the fact that their elemental information is contained in simple pairwise logratios of the parts that constitute the composition. While pairwise logratios are typically easy to interpret, the number of possible pairs to consider quickly becomes too large even for medium-sized compositions, which may hinder interpretability in further multivariate analysis. Sparse methods can therefore be useful for identifying a few important pairwise logratios (and parts contained in them) from the total candidate set. To this end, we propose a procedure based on the construction of all possible pairwise logratios and employ sparse principal component analysis to identify important pairwise logratios. The performance of the procedure is demonstrated with both simulated and real-world data. In our empirical analysis, we propose three visual tools showing (i) the balance between sparsity and explained variability, (ii) the stability of the pairwise logratios, and (iii) the importance of the original compositional parts to aid practitioners in their model interpretation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Geosciences
Mathematical Geosciences 地学-地球科学综合
CiteScore
5.30
自引率
15.40%
发文量
50
审稿时长
>12 weeks
期刊介绍: Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.
期刊最新文献
Identifying Important Pairwise Logratios in Compositional Data with Sparse Principal Component Analysis. Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification Quantifying and Analyzing the Uncertainty in Fault Interpretation Using Entropy Robust Optimization Using the Mean Model with Bias Correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1