Experimental Study of the Nonlinear Behaviour of Deep-Sea Mooring Polyester Fibre Ropes

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE Polish Maritime Research Pub Date : 2023-09-01 DOI:10.2478/pomr-2023-0048
He Zhang, Ji Zeng, Bowen Jin, Chiate Chou, Hangyu Li, Hailei Dong
{"title":"Experimental Study of the Nonlinear Behaviour of Deep-Sea Mooring Polyester Fibre Ropes","authors":"He Zhang, Ji Zeng, Bowen Jin, Chiate Chou, Hangyu Li, Hailei Dong","doi":"10.2478/pomr-2023-0048","DOIUrl":null,"url":null,"abstract":"Abstract Mooring ropes are essential components of ships and offshore floating structures and they are subjected to cyclic axial loads. This study investigates the evolution of the full-cycle stiffness of fibre polyester ropes under long-term static and dynamic loading. First, the static stiffness characteristics of the ropes, including the rope elongation properties at different stages, shrinkage rates, and creep coefficients after an idle period, are examined under static loads; an empirical formula for static stiffness is established. Second, the dynamic stiffness characteristics of the ropes are investigated under cyclic loads that are typical of platform production operations. The stabilities of the structure under different tensions are compared; the effects of mean tension, tension amplitude, and load cycle on the dynamic stiffness of the ropes are analysed and an empirical formula is established to predict the dynamic stiffness during the engineering design phase. The results of this study can be helpful for the rational design of deep-sea taut-leg mooring systems because they present the evolution of the full-cycle stiffness characteristics of mooring ropes.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"46 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Mooring ropes are essential components of ships and offshore floating structures and they are subjected to cyclic axial loads. This study investigates the evolution of the full-cycle stiffness of fibre polyester ropes under long-term static and dynamic loading. First, the static stiffness characteristics of the ropes, including the rope elongation properties at different stages, shrinkage rates, and creep coefficients after an idle period, are examined under static loads; an empirical formula for static stiffness is established. Second, the dynamic stiffness characteristics of the ropes are investigated under cyclic loads that are typical of platform production operations. The stabilities of the structure under different tensions are compared; the effects of mean tension, tension amplitude, and load cycle on the dynamic stiffness of the ropes are analysed and an empirical formula is established to predict the dynamic stiffness during the engineering design phase. The results of this study can be helpful for the rational design of deep-sea taut-leg mooring systems because they present the evolution of the full-cycle stiffness characteristics of mooring ropes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深海系泊聚酯纤维缆绳非线性特性试验研究
系泊索是船舶和海上浮式结构的重要组成部分,它承受着循环轴向载荷。研究了涤纶纤维绳在长期静、动载荷作用下的全周期刚度演变规律。首先,在静载荷作用下,研究了绳索的静刚度特性,包括不同阶段的伸长特性、收缩率和闲置期后的蠕变系数;建立了静刚度的经验公式。其次,研究了平台生产作业中典型的循环载荷作用下绳索的动态刚度特性。比较了不同张力作用下结构的稳定性;分析了平均张力、张力幅值和荷载周期对缆绳动刚度的影响,建立了在工程设计阶段预测缆绳动刚度的经验公式。研究结果反映了系泊索的全周期刚度变化规律,为深海系泊系统的合理设计提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
期刊最新文献
Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine Computer-Aided System for Layout of Fire Hydrants on Boards Designed Vessel Using the Particle Swarm Optimization Algorithm Optimal UV Quantity for a Ballast Water Treatment System for Compliance with Imo Standards Human Resource Management Digitalisation in Multidisciplinary Ship Design Companies Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1