{"title":"Fault Diagnosis of Bearings Based on SSWT, Bayes Optimisation and CNN","authors":"Guohua Yang, Yihuai Hu, Qingguo Shi","doi":"10.2478/pomr-2023-0046","DOIUrl":null,"url":null,"abstract":"Abstract Bearings are important components of rotating machinery and transmission systems, and are often damaged by wear, overload and shocks. Due to the low resolution of traditional time-frequency analysis for the diagnosis of bearing faults, a synchrosqueezed wavelet transform (SSWT) is proposed to improve the resolution. An improved convolutional neural network fault diagnosis model is proposed in this paper, and a Bayesian optimisation method is applied to automatically adjust the structure and hyperparameters of the model to improve the accuracy of bearing fault diagnosis. Experimental results from the accelerated life testing of bearings show that the proposed method is able to accurately identify various types of bearing fault and the different status of these faults under complex running conditions, while achieving very good generalisation ability.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"37 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0046","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Bearings are important components of rotating machinery and transmission systems, and are often damaged by wear, overload and shocks. Due to the low resolution of traditional time-frequency analysis for the diagnosis of bearing faults, a synchrosqueezed wavelet transform (SSWT) is proposed to improve the resolution. An improved convolutional neural network fault diagnosis model is proposed in this paper, and a Bayesian optimisation method is applied to automatically adjust the structure and hyperparameters of the model to improve the accuracy of bearing fault diagnosis. Experimental results from the accelerated life testing of bearings show that the proposed method is able to accurately identify various types of bearing fault and the different status of these faults under complex running conditions, while achieving very good generalisation ability.
期刊介绍:
The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components.
All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as:
all types of vessels and their equipment,
fixed and floating offshore units and their components,
autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV).
We welcome submissions from these fields in the following technical topics:
ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc.,
structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc.,
marine equipment: ship and offshore unit power plants: overboarding equipment; etc.