{"title":"Tribological performance of polymeric friction modifiers under sliding rolling contact condition","authors":"Febin Cyriac, Xin Yi Tee, Pui Shan Chow","doi":"10.1002/ls.1678","DOIUrl":null,"url":null,"abstract":"<p>The tribological performance of two polymeric friction modifiers, one based on an ester-based compound and another based on an ethoxylated fatty ester and an organic friction modifier, oleamide, was studied at 50, 90 and 140°C using a Mini Traction Machine equipped with optical interferometry and electrical contact resistance. The ability to form surface film is found to vary among the friction modifiers and with temperature and rubbing duration. Despite a thinner film being formed, polymeric friction modifier (PFMs) exhibited lower friction and wear than oleamide at all the studied temperatures. Further, the PFMs reduced boundary friction more effectively at higher temperature. In accordance with lower boundary friction, a smoother surface topography characterized by low wear was exhibited by PFM lubricated surfaces at higher temperatures. Scanning electron microscopy-energy dispersive x-ray analysis and time-of-flight secondary ion mass spectrometry provided insights on the tribofilm formation. The improvement in the tribological performance of PFMs is attributed to temperature-induced conformation transition of adsorbed polymer chains on the surface. The results are corroborated by data obtained from dynamic light scattering and gel permeation chromatography.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 2","pages":"119-134"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1678","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The tribological performance of two polymeric friction modifiers, one based on an ester-based compound and another based on an ethoxylated fatty ester and an organic friction modifier, oleamide, was studied at 50, 90 and 140°C using a Mini Traction Machine equipped with optical interferometry and electrical contact resistance. The ability to form surface film is found to vary among the friction modifiers and with temperature and rubbing duration. Despite a thinner film being formed, polymeric friction modifier (PFMs) exhibited lower friction and wear than oleamide at all the studied temperatures. Further, the PFMs reduced boundary friction more effectively at higher temperature. In accordance with lower boundary friction, a smoother surface topography characterized by low wear was exhibited by PFM lubricated surfaces at higher temperatures. Scanning electron microscopy-energy dispersive x-ray analysis and time-of-flight secondary ion mass spectrometry provided insights on the tribofilm formation. The improvement in the tribological performance of PFMs is attributed to temperature-induced conformation transition of adsorbed polymer chains on the surface. The results are corroborated by data obtained from dynamic light scattering and gel permeation chromatography.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.