{"title":"Lateral edifice collapse and volcanic debris avalanches: a post-1980 Mount St. Helens perspective","authors":"Lee Siebert, Mark E. Reid","doi":"10.1007/s00445-023-01662-z","DOIUrl":null,"url":null,"abstract":"Abstract The 1980 eruption of Mount St. Helens was instrumental in advancing understanding of how volcanoes work. Lateral edifice collapses and the generation of volcanic debris avalanches were not widely recognized prior to that eruption, making assessment of their hazards and risks challenging. The proliferation of studies since 1980 on resulting deposits and evaluation of processes leading to their generation has built on the insights from the 1980 eruption. Volcano-related destabilizing phenomena, such as strength reduction by hydrothermal alteration, deformation and structural modifications from shallow magma intrusion, and thermal pressurization of pore fluids supplement those factors also affecting nonvolcanic slopes and can lead to larger failures. Remote and ground-based monitoring techniques can aid in detecting potentially destabilizing dynamic processes and in forecasting the size and location of future large lateral collapses, although forecasting remains a topic of investigation. More than a thousand large lateral collapse events likely ≥ 0.01 km 3 in volume have now been identified from deposits or inferred from source area morphology, leading to a recognition of their importance in the evolution of volcanoes and the hazards they pose. Criteria for recognition of debris-avalanche deposits include morphological factors and textural characteristics from outcrop to microscopic scale, allowing discrimination from other volcaniclastic deposits. Lateral edifice failure impacts a broad spectrum of volcanic structures in diverse tectonic settings and can occur multiple times during the evolution of individual volcanoes. Globally, collapses ≥ 0.1 km 3 in volume have been documented 5–6 times per century since 1500 CE, with about one per century having a volume ≥ 1 km 3 . Smaller events < 0.1 km 3 are underrepresented in the earlier record but also have high hazard impact.","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"57 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00445-023-01662-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The 1980 eruption of Mount St. Helens was instrumental in advancing understanding of how volcanoes work. Lateral edifice collapses and the generation of volcanic debris avalanches were not widely recognized prior to that eruption, making assessment of their hazards and risks challenging. The proliferation of studies since 1980 on resulting deposits and evaluation of processes leading to their generation has built on the insights from the 1980 eruption. Volcano-related destabilizing phenomena, such as strength reduction by hydrothermal alteration, deformation and structural modifications from shallow magma intrusion, and thermal pressurization of pore fluids supplement those factors also affecting nonvolcanic slopes and can lead to larger failures. Remote and ground-based monitoring techniques can aid in detecting potentially destabilizing dynamic processes and in forecasting the size and location of future large lateral collapses, although forecasting remains a topic of investigation. More than a thousand large lateral collapse events likely ≥ 0.01 km 3 in volume have now been identified from deposits or inferred from source area morphology, leading to a recognition of their importance in the evolution of volcanoes and the hazards they pose. Criteria for recognition of debris-avalanche deposits include morphological factors and textural characteristics from outcrop to microscopic scale, allowing discrimination from other volcaniclastic deposits. Lateral edifice failure impacts a broad spectrum of volcanic structures in diverse tectonic settings and can occur multiple times during the evolution of individual volcanoes. Globally, collapses ≥ 0.1 km 3 in volume have been documented 5–6 times per century since 1500 CE, with about one per century having a volume ≥ 1 km 3 . Smaller events < 0.1 km 3 are underrepresented in the earlier record but also have high hazard impact.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.