Pub Date : 2025-01-01Epub Date: 2025-03-31DOI: 10.1007/s00445-025-01817-0
S Biass, B F Houghton, E W Llewellin, K C Curran, T Thordarson, T R Orr, C E Parcheta, P Mouginis-Mark
Basaltic lava flows can be highly destructive. Forecasting the future path and/or behavior of an active lava flow is challenging because topography is often poorly constrained and lava has a complex rheology and emplacement history. Preserved lavas are an important source of information which, combined with observations of active flows, underpins conceptual models of lava flow emplacement. However, the value of preserved lavas is limited because pre-eruptive topography and, thus, syn-eruptive lava flow geometry are usually not known. Here, we use tree-mold data to constrain pre-eruptive topography and syn-eruptive lava flow geometry of the July 1974 flow of Kīlauea (USA). Tree molds, which are formed after advancing lava encloses standing trees, preserve the lava inundation height and the final preserved thickness of lava. We used data from 282 tree molds to reconstruct the temporal and spatial evolution of the ~ 2.1 km-long July 1974 flow. The tree mold dataset yields a detailed dynamic picture of staged emplacement, separated by intervals of ponding. In some ponded areas, flow depth during emplacement (~ 5 m) was twice the preserved thickness of the final lava (2-3 m). Drainage of the ponds led to episodic surges in flow advancement, decoupled from fluctuations in vent discharge rate. We infer that the final breakout occurred after the cessation of fountaining. Such complex emplacement histories may be common for pāhoehoe lavas at Kīlauea and elsewhere in situations where the terrain is of variable slope, and/or where lava is temporarily perched and stored.
Supplementary information: The online version contains supplementary material available at 10.1007/s00445-025-01817-0.
{"title":"Complex staged emplacement of a basaltic lava: The example of the July 1974 flow of Kīlauea.","authors":"S Biass, B F Houghton, E W Llewellin, K C Curran, T Thordarson, T R Orr, C E Parcheta, P Mouginis-Mark","doi":"10.1007/s00445-025-01817-0","DOIUrl":"10.1007/s00445-025-01817-0","url":null,"abstract":"<p><p>Basaltic lava flows can be highly destructive. Forecasting the future path and/or behavior of an active lava flow is challenging because topography is often poorly constrained and lava has a complex rheology and emplacement history. Preserved lavas are an important source of information which, combined with observations of active flows, underpins conceptual models of lava flow emplacement. However, the value of preserved lavas is limited because pre-eruptive topography and, thus, syn-eruptive lava flow geometry are usually not known. Here, we use tree-mold data to constrain pre-eruptive topography and syn-eruptive lava flow geometry of the July 1974 flow of Kīlauea (USA). Tree molds, which are formed after advancing lava encloses standing trees, preserve the lava inundation height and the final preserved thickness of lava. We used data from 282 tree molds to reconstruct the temporal and spatial evolution of the ~ 2.1 km-long July 1974 flow. The tree mold dataset yields a detailed dynamic picture of staged emplacement, separated by intervals of ponding. In some ponded areas, flow depth during emplacement (~ 5 m) was twice the preserved thickness of the final lava (2-3 m). Drainage of the ponds led to episodic surges in flow advancement, decoupled from fluctuations in vent discharge rate. We infer that the final breakout occurred after the cessation of fountaining. Such complex emplacement histories may be common for pāhoehoe lavas at Kīlauea and elsewhere in situations where the terrain is of variable slope, and/or where lava is temporarily perched and stored.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00445-025-01817-0.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"87 4","pages":"30"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143774905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: To evaluate the efficacy of chondroitin sulfate (CS) and glucosamine (GS), the most relevant drugs of "Symptomatic Slow Acting Drug for Osteoarthritis" (SYSADOA), in the functional and symptomatic improvement of temporomandibular dysfunction. Although, controversy exists regarding their benefit.
Methods: An electronic search was conducted to retrieve randomized controlled clinical trials (RCTs). The risk of bias assessment was evaluated using the Cochrane Collaboration's tool. Data were meta-analyzed with a random effect model whenever possible.
Results: Three RCTs were included. Qualitative results showed a decrease in pain, joint noise, and inflammatory biomarkers in synovial fluid and an improvement in maximum mouth opening without significant adverse effects. Meta-analysis showed a significant increase in maximum mouth opening with the use of CS-GS (p = 0.19). No statistically significant differences were found in pain reduction compared to tramadol.
Conclusion: CS-GS is effective and safe in the symptomatic and functional improvement of patients with TMD.
{"title":"Efficacy of the use of chondroitin sulphate and glucosamine for the treatment of temporomandibular joint dysfunction: A systematic review and meta-analysis.","authors":"Víctor Ruiz-Romero, Jorge Toledano-Serrabona, Cosme Gay-Escoda","doi":"10.1080/08869634.2022.2076796","DOIUrl":"10.1080/08869634.2022.2076796","url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the efficacy of chondroitin sulfate (CS) and glucosamine (GS), the most relevant drugs of \"Symptomatic Slow Acting Drug for Osteoarthritis\" (SYSADOA), in the functional and symptomatic improvement of temporomandibular dysfunction. Although, controversy exists regarding their benefit.</p><p><strong>Methods: </strong>An electronic search was conducted to retrieve randomized controlled clinical trials (RCTs). The risk of bias assessment was evaluated using the Cochrane Collaboration's tool. Data were meta-analyzed with a random effect model whenever possible.</p><p><strong>Results: </strong>Three RCTs were included. Qualitative results showed a decrease in pain, joint noise, and inflammatory biomarkers in synovial fluid and an improvement in maximum mouth opening without significant adverse effects. Meta-analysis showed a significant increase in maximum mouth opening with the use of CS-GS (<i>p</i> = 0.19). No statistically significant differences were found in pain reduction compared to tramadol.</p><p><strong>Conclusion: </strong>CS-GS is effective and safe in the symptomatic and functional improvement of patients with TMD.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"79 1","pages":"60-69"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75147725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-02-26DOI: 10.1007/s00445-025-01803-6
B Esse, M Burton, C Hayer, G La Spina, A Pardo Cofrades, M Asensio-Ramos, J Barrancos, N Pérez
As global populations grow, the exposure of communities and infrastructure to volcanic hazards increases every year. Once a volcanic eruption begins, it becomes critical for risk managers to understand the likely evolution and duration of the activity to assess its impact on populations and infrastructure. Here, we report an exponential decay in satellite-derived SO2 emission rates during the 2021 eruption of Tajogaite, La Palma, Canary Islands, and show that this pattern allows a reliable and consistent forecast of the evolution of the SO2 emissions after the first third of the total eruption duration. The eruption ended when fluxes dropped to less than 6% of their fitted maximum value, providing a useful benchmark to compare with other eruptions. Using a 1-D numerical magma ascent model, we suggest that the exponentially decreasing SO2 emission trend was primarily produced by reducing magma chamber pressure as the eruption emptied the feeding reservoir. This work highlights the key role that satellite-derived SO2 emission data can play in forecasting the evolution of volcanic eruptions and how the use of magma ascent models can inform the driving mechanisms controlling the evolution of the eruption.
Supplementary information: The online version contains supplementary material available at 10.1007/s00445-025-01803-6.
{"title":"Forecasting the evolution of the 2021 Tajogaite eruption, La Palma, with TROPOMI/PlumeTraj-derived SO<sub>2</sub> emission rates.","authors":"B Esse, M Burton, C Hayer, G La Spina, A Pardo Cofrades, M Asensio-Ramos, J Barrancos, N Pérez","doi":"10.1007/s00445-025-01803-6","DOIUrl":"10.1007/s00445-025-01803-6","url":null,"abstract":"<p><p>As global populations grow, the exposure of communities and infrastructure to volcanic hazards increases every year. Once a volcanic eruption begins, it becomes critical for risk managers to understand the likely evolution and duration of the activity to assess its impact on populations and infrastructure. Here, we report an exponential decay in satellite-derived SO<sub>2</sub> emission rates during the 2021 eruption of Tajogaite, La Palma, Canary Islands, and show that this pattern allows a reliable and consistent forecast of the evolution of the SO<sub>2</sub> emissions after the first third of the total eruption duration. The eruption ended when fluxes dropped to less than 6% of their fitted maximum value, providing a useful benchmark to compare with other eruptions. Using a 1-D numerical magma ascent model, we suggest that the exponentially decreasing SO<sub>2</sub> emission trend was primarily produced by reducing magma chamber pressure as the eruption emptied the feeding reservoir. This work highlights the key role that satellite-derived SO<sub>2</sub> emission data can play in forecasting the evolution of volcanic eruptions and how the use of magma ascent models can inform the driving mechanisms controlling the evolution of the eruption.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00445-025-01803-6.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"87 3","pages":"20"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s00445-024-01767-z
Santiago Santamaría, Mathilde Bablon, Xavier Quidelleur, Pablo Samaniego, Jean-Luc Le Pennec, Silvana Hidalgo, Céline Liorzou
The Ecuadorian arc is composed of an unusually high number of volcanoes, organized as along-arc alignments and across-arc clusters, in a relatively small area. Although several geochronological studies have been carried out in the last three decades, the eruptive history of the central zone of the arc remains poorly documented, preventing analysis of the initiation of volcanism of the whole arc. In this study, we present new K–Ar ages obtained from this central area, referred to as the Quito segment. These results were then incorporated into an updated comprehensive geochronological database of about 250 ages, allowing us to describe, at the arc scale, the spatial and temporal evolution of Quaternary volcanism in Ecuador. About eighty Quaternary volcanoes have been identified in the Ecuadorian Andes, 45 of which have been radioisotopically dated and/or identified as active or potentially active. The volcanic arc developed in three stages, characterized by an increase in the total number of active volcanoes. During the oldest Plio-Early Pleistocene stage, documented volcanic activity was mostly concentrated in the Eastern Cordillera of the Quito segment, with minor effusive eruptions in the southern Back-Arc. Since ~ 1.4 Ma, activity has spread to the surroundings of the Quito segment, and new edifices also appeared in the Western Cordillera and the Inter-Andean Valley. Towards the end of this intermediate stage (i.e., ~ 800 ka), volcanism occurred in isolated areas north and south of the Inter-Andean Valley. Finally, the late and current has been characterized by a remarkable increase in volcanic activity since ~ 600 ka. About 50 volcanoes were active during this stage. The spatial distribution of the Ecuadorian arc volcanism seems to be guided by deep mechanisms (i.e., slab geometry and age, amount and composition (fluids and melts) of slab input, mantle heterogeneities) and old crustal tectonic structures of the Western Cordillera, while neotectonics seems to influence the development of stratovolcanoes. In addition, we note that the spatial and temporal evolution of volcanism highlights the influence of the Carnegie Ridge and the young Nazca crust on the thermal regime of the subduction system, which in turn increases of volcanic activity in Ecuador.
厄瓜多尔弧在一个相对较小的区域内由数量异常众多的火山组成,这些火山以沿弧排列和跨弧集群的方式分布。尽管在过去的三十年里已经开展了多项地质年代学研究,但对弧中心区域的火山喷发历史仍然缺乏记录,因此无法对整个弧的火山活动起源进行分析。在本研究中,我们介绍了从这一中心区域(称为基多段)获得的新的 K-Ar 年龄。这些结果被纳入到一个包含约 250 个年龄的最新综合地质年代数据库中,使我们能够在弧的尺度上描述厄瓜多尔第四纪火山活动的空间和时间演变。厄瓜多尔安第斯山脉已发现约八十座第四纪火山,其中 45 座已经过放射性同位素测定和/或确定为活火山或潜在活火山。火山弧的发展分为三个阶段,其特点是活火山总数不断增加。在最古老的上新世-早更新世阶段,有记载的火山活动主要集中在基多段的东科迪勒拉山系,在后弧南部有少量喷发。自 ~ 1.4 Ma 开始,火山活动扩展到基多地段的周边地区,西科迪勒拉山系和安第斯山谷也出现了新的火山口。在这一中间阶段的末期(即约 800 ka),安第斯山谷北部和南部的个别地区出现了火山活动。最后,晚期和当前阶段的特点是,自大约 600 ka 以来,火山活动显著增加。在这一阶段,约有 50 座火山处于活跃期。厄瓜多尔弧火山活动的空间分布似乎受深部机制(即板块几何形状和年龄、板块输入的数量和成分(流体和熔体)、地幔异质性)以及西科迪勒拉山系古老地壳构造结构的引导,而新构造似乎影响着地层火山的发展。此外,我们还注意到,火山活动的时空演变突显了卡内基海脊和年轻的纳斯卡地壳对俯冲系统热机制的影响,这反过来又增加了厄瓜多尔的火山活动。
{"title":"Blossoming of the Pleistocene volcanism in the Ecuadorian Andes: a review based on new and recent geochronological data","authors":"Santiago Santamaría, Mathilde Bablon, Xavier Quidelleur, Pablo Samaniego, Jean-Luc Le Pennec, Silvana Hidalgo, Céline Liorzou","doi":"10.1007/s00445-024-01767-z","DOIUrl":"https://doi.org/10.1007/s00445-024-01767-z","url":null,"abstract":"<p>The Ecuadorian arc is composed of an unusually high number of volcanoes, organized as along-arc alignments and across-arc clusters, in a relatively small area. Although several geochronological studies have been carried out in the last three decades, the eruptive history of the central zone of the arc remains poorly documented, preventing analysis of the initiation of volcanism of the whole arc. In this study, we present new K–Ar ages obtained from this central area, referred to as the Quito segment. These results were then incorporated into an updated comprehensive geochronological database of about 250 ages, allowing us to describe, at the arc scale, the spatial and temporal evolution of Quaternary volcanism in Ecuador. About eighty Quaternary volcanoes have been identified in the Ecuadorian Andes, 45 of which have been radioisotopically dated and/or identified as active or potentially active. The volcanic arc developed in three stages, characterized by an increase in the total number of active volcanoes. During the oldest Plio-Early Pleistocene stage, documented volcanic activity was mostly concentrated in the Eastern Cordillera of the Quito segment, with minor effusive eruptions in the southern Back-Arc. Since ~ 1.4 Ma, activity has spread to the surroundings of the Quito segment, and new edifices also appeared in the Western Cordillera and the Inter-Andean Valley. Towards the end of this intermediate stage (i.e., ~ 800 ka), volcanism occurred in isolated areas north and south of the Inter-Andean Valley. Finally, the late and current has been characterized by a remarkable increase in volcanic activity since ~ 600 ka. About 50 volcanoes were active during this stage. The spatial distribution of the Ecuadorian arc volcanism seems to be guided by deep mechanisms (i.e., slab geometry and age, amount and composition (fluids and melts) of slab input, mantle heterogeneities) and old crustal tectonic structures of the Western Cordillera, while neotectonics seems to influence the development of stratovolcanoes. In addition, we note that the spatial and temporal evolution of volcanism highlights the influence of the Carnegie Ridge and the young Nazca crust on the thermal regime of the subduction system, which in turn increases of volcanic activity in Ecuador.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"17 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s00445-024-01766-0
Michelle L. Coombs, Cheryl E. Cameron, Hannah R. Dietterich, Eleanor S. Boyce, Aaron G. Wech, Ronni Grapenthin, Kristi L. Wallace, Tom Parker, Taryn Lopez, Scott Crass, David Fee, Matthew M. Haney, Dane Ketner, Matthew W. Loewen, John J. Lyons, Jenny S. Nakai, John A. Power, Steven Botnick, Israel Brewster, Max L Enders, Dain Harmon, Peter J. Kelly, Michael Randall
The Alaska Volcano Observatory (AVO) uses multidisciplinary data to monitor and study dozens of active and potentially active volcanoes. Here, we provide an overview of internally and externally generated data types, tools and resources used in their management, and challenges faced. Data sources include the following: (1) a multiparameter (seismic, infrasound, GNSS, web cameras) ground-based monitoring network that spans 3000 km and transmits data in real time; (2) a variety of satellite-borne sensors that provide information about surface change and volcanic emissions; (3) geologic and gas field campaigns; and (4) other external data products that provide situation awareness. Each data type requires distinct acquisition, processing, storage, visualization, and archiving approaches. AVO uses a variety of externally and internally developed tools to handle individual data types as well as multidisciplinary volcanological data. A primary tool is the Geologic Database of Information on Volcanoes in Alaska (GeoDIVA), which stores detailed, searchable information on more than 140 volcanoes and over 1000 eruptions and unrest events, including images, eruption descriptions, and geologic station and sample data, metadata, and analyses. It interacts with other internal tools that store monitoring reports and other operational records. Additional data management resources used by AVO assist with alarms and alerts, state-of-health monitoring, and multiparameter visualization. Requirements for 24/7 accessibility, the ever-expanding portfolio of data, and transitioning new tools from development to operations are all challenges faced by AVO and other volcano observatories. AVO strives to meet FAIR data practices and ensure that data are available to national and international community efforts using external repositories as well as those hosted by AVO and its parent institutions.
{"title":"From field station to forecast: managing data at the Alaska Volcano Observatory","authors":"Michelle L. Coombs, Cheryl E. Cameron, Hannah R. Dietterich, Eleanor S. Boyce, Aaron G. Wech, Ronni Grapenthin, Kristi L. Wallace, Tom Parker, Taryn Lopez, Scott Crass, David Fee, Matthew M. Haney, Dane Ketner, Matthew W. Loewen, John J. Lyons, Jenny S. Nakai, John A. Power, Steven Botnick, Israel Brewster, Max L Enders, Dain Harmon, Peter J. Kelly, Michael Randall","doi":"10.1007/s00445-024-01766-0","DOIUrl":"https://doi.org/10.1007/s00445-024-01766-0","url":null,"abstract":"<p>The Alaska Volcano Observatory (AVO) uses multidisciplinary data to monitor and study dozens of active and potentially active volcanoes. Here, we provide an overview of internally and externally generated data types, tools and resources used in their management, and challenges faced. Data sources include the following: (1) a multiparameter (seismic, infrasound, GNSS, web cameras) ground-based monitoring network that spans 3000 km and transmits data in real time; (2) a variety of satellite-borne sensors that provide information about surface change and volcanic emissions; (3) geologic and gas field campaigns; and (4) other external data products that provide situation awareness. Each data type requires distinct acquisition, processing, storage, visualization, and archiving approaches. AVO uses a variety of externally and internally developed tools to handle individual data types as well as multidisciplinary volcanological data. A primary tool is the Geologic Database of Information on Volcanoes in Alaska (GeoDIVA), which stores detailed, searchable information on more than 140 volcanoes and over 1000 eruptions and unrest events, including images, eruption descriptions, and geologic station and sample data, metadata, and analyses. It interacts with other internal tools that store monitoring reports and other operational records. Additional data management resources used by AVO assist with alarms and alerts, state-of-health monitoring, and multiparameter visualization. Requirements for 24/7 accessibility, the ever-expanding portfolio of data, and transitioning new tools from development to operations are all challenges faced by AVO and other volcano observatories. AVO strives to meet FAIR data practices and ensure that data are available to national and international community efforts using external repositories as well as those hosted by AVO and its parent institutions.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"170 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1007/s00445-024-01760-6
IAVCEI-INVOLC International Network for Volcanology Collaboration
The International Network for Volcanology Collaboration (INVOLC) is a network formalised by the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) with the specific ambition to enhance volcanology globally through improved international collaboration. IAVCEI-INVOLC was created with a focus on volcano scientists working in resource-constrained contexts, including those based in low- or middle-income countries. After a community-wide online survey and inaugural workshop during which INVOLC’s ambitions were discussed, a series of challenges, as commonly experienced by those working in resource-constrained settings, were identified. These challenges may present barriers to participation in volcano science in an international context and are related to both organisational resources (financial, human, technical) and inclusion in research collaborations. In this perspectives paper, we present a series of 15 guidelines for best-engagement protocols in international collaboration in volcanology that may be adopted during times of quiescence, volcanic unrest and/or an eruption and its aftermath. Our aspiration is that these guidelines will help build more respectful, equitable and sustainable partnerships that will ultimately advance the science of volcanology.
{"title":"Towards inclusive collaboration in volcanology: guidelines for best-engagement protocols in international collaboration","authors":"IAVCEI-INVOLC International Network for Volcanology Collaboration","doi":"10.1007/s00445-024-01760-6","DOIUrl":"https://doi.org/10.1007/s00445-024-01760-6","url":null,"abstract":"<p>The International Network for Volcanology Collaboration (INVOLC) is a network formalised by the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) with the specific ambition to enhance volcanology globally through improved international collaboration. IAVCEI-INVOLC was created with a focus on volcano scientists working in resource-constrained contexts, including those based in low- or middle-income countries. After a community-wide online survey and inaugural workshop during which INVOLC’s ambitions were discussed, a series of challenges, as commonly experienced by those working in resource-constrained settings, were identified. These challenges may present barriers to participation in volcano science in an international context and are related to both organisational resources (financial, human, technical) and inclusion in research collaborations. In this perspectives paper, we present a series of 15 guidelines for best-engagement protocols in international collaboration in volcanology that may be adopted during times of quiescence, volcanic unrest and/or an eruption and its aftermath. Our aspiration is that these guidelines will help build more respectful, equitable and sustainable partnerships that will ultimately advance the science of volcanology.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"10 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1007/s00445-024-01765-1
Alain Burgisser, Ally Peccia, Terry Plank, Yves Moussallam
The 2050 ± 50 14C yBP caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in both Greenland and Antarctic ice cores. The associated global climate cooling was driven by the amount of sulfur injected into the stratosphere during the climactic phase of the eruption. This phase was dominated by pyroclastic density currents, which have complex emplacement dynamics precluding direct estimates of the sulfur stratospheric load. We simulated the dynamics of the climactic phase with the two-phase flow model MFIX-TFM under axisymmetric conditions with several combinations of mass eruption rate, jet water content, vent size, particle size and density, topography, and emission duration. Results suggest that a steady mass eruption rate of 1.2–3.9 × 1011 kg/s is consistent with field observations. Minimal stratospheric injections occur in pulses issued from the central plume initially rising above the caldera center and from successive phoenix ash-clouds caused by the encounter of the pyroclastic density currents with topography. Most of the volcanic gas is injected into the stratosphere by the buoyant liftoff of dilute parts of the currents at the end of the eruption. Overall, 58–64 wt% of the total amount of gas emitted reaches the stratosphere. A fluctuating emission rate or an efficient final liftoff due to seawater interaction is unlikely to have increased this loading. Combined with petrological estimates of the degassed S, our results suggest that the eruption injected 11–20 Tg S into the stratosphere, consistent with the subsequent climate response and Greenland ice sheet deposition. Our results also show that the combination of the source Richardson number and the mass eruption rate is able to characterize the buoyant–collapse transition at Okmok. We extended this result to 141 runs from 10 published numerical studies of eruptive jets and found that this regime diagram is able to capture the first-order layout of the buoyant–collapse transition in all studies except one. An existing multivariate criterion yields the best predictions of this regime transition.
{"title":"Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska","authors":"Alain Burgisser, Ally Peccia, Terry Plank, Yves Moussallam","doi":"10.1007/s00445-024-01765-1","DOIUrl":"https://doi.org/10.1007/s00445-024-01765-1","url":null,"abstract":"<p>The 2050 ± 50 <sup>14</sup>C yBP caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in both Greenland and Antarctic ice cores. The associated global climate cooling was driven by the amount of sulfur injected into the stratosphere during the climactic phase of the eruption. This phase was dominated by pyroclastic density currents, which have complex emplacement dynamics precluding direct estimates of the sulfur stratospheric load. We simulated the dynamics of the climactic phase with the two-phase flow model MFIX-TFM under axisymmetric conditions with several combinations of mass eruption rate, jet water content, vent size, particle size and density, topography, and emission duration. Results suggest that a steady mass eruption rate of 1.2–3.9 × 10<sup>11</sup> kg/s is consistent with field observations. Minimal stratospheric injections occur in pulses issued from the central plume initially rising above the caldera center and from successive phoenix ash-clouds caused by the encounter of the pyroclastic density currents with topography. Most of the volcanic gas is injected into the stratosphere by the buoyant liftoff of dilute parts of the currents at the end of the eruption. Overall, 58–64 wt% of the total amount of gas emitted reaches the stratosphere. A fluctuating emission rate or an efficient final liftoff due to seawater interaction is unlikely to have increased this loading. Combined with petrological estimates of the degassed S, our results suggest that the eruption injected 11–20 Tg S into the stratosphere, consistent with the subsequent climate response and Greenland ice sheet deposition. Our results also show that the combination of the source Richardson number and the mass eruption rate is able to characterize the buoyant–collapse transition at Okmok. We extended this result to 141 runs from 10 published numerical studies of eruptive jets and found that this regime diagram is able to capture the first-order layout of the buoyant–collapse transition in all studies except one. An existing multivariate criterion yields the best predictions of this regime transition.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"20 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1007/s00445-024-01764-2
Jacob Brauner, Thomas R. Walter, Oscar A. N. Ela, Loÿc Vanderkluysen
The morphology of the shield volcanoes on Bioko, a volcanic island in central Africa, is controlled both by tectonic and volcanic processes, but the complex interplay of these regional and local mechanisms is poorly understood. Using a TanDEM-X digital elevation model, we are able to create an inventory of 436 vents and monogenetic cones, and over 1330 structural elements and lineaments, and perform a comprehensive morphological and geospatial analysis. We provide detail on the general geomorphology of Bioko Island, and describe its flat top, apical graben-like structures, and the setting of the structural inventory created. Based on vent density and lineament mapping, we are able to identify volcanic rift zones that are governed by vent clustering and the asymmetry of associated monogenetic cones. Specifically, we find that eruption vents are not only clustered but aligned and follow the principal NE-SW axis, although we also highlight evidence for complex structures such as side-stepping alignments and en échelon patterns indicative of strike-slip contributions to the volcano-tectonic fabrics. We discuss possible volcano-tectonic and regional tectonic contributors, such as the Cameroon Volcanic Line and intersecting fracture zones, as well as gravity-tectonic processes dominant at Bioko Island. In this view, our results are relevant for understanding the past and recent volcanic activity and discuss the influence of regional and local volcano-tectonic architectures.
{"title":"Volcano-tectonic controls on the morphology and volcanic rift zone configuration on Bioko Island (Equatorial Guinea) derived from TanDEM-X data","authors":"Jacob Brauner, Thomas R. Walter, Oscar A. N. Ela, Loÿc Vanderkluysen","doi":"10.1007/s00445-024-01764-2","DOIUrl":"https://doi.org/10.1007/s00445-024-01764-2","url":null,"abstract":"<p>The morphology of the shield volcanoes on Bioko, a volcanic island in central Africa, is controlled both by tectonic and volcanic processes, but the complex interplay of these regional and local mechanisms is poorly understood. Using a TanDEM-X digital elevation model, we are able to create an inventory of 436 vents and monogenetic cones, and over 1330 structural elements and lineaments, and perform a comprehensive morphological and geospatial analysis. We provide detail on the general geomorphology of Bioko Island, and describe its flat top, apical graben-like structures, and the setting of the structural inventory created. Based on vent density and lineament mapping, we are able to identify volcanic rift zones that are governed by vent clustering and the asymmetry of associated monogenetic cones. Specifically, we find that eruption vents are not only clustered but aligned and follow the principal NE-SW axis, although we also highlight evidence for complex structures such as side-stepping alignments and <i>en échelon</i> patterns indicative of strike-slip contributions to the volcano-tectonic fabrics. We discuss possible volcano-tectonic and regional tectonic contributors, such as the Cameroon Volcanic Line and intersecting fracture zones, as well as gravity-tectonic processes dominant at Bioko Island. In this view, our results are relevant for understanding the past and recent volcanic activity and discuss the influence of regional and local volcano-tectonic architectures.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"53 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1007/s00445-024-01762-4
Andrew J. L. Harris, Bachtiar Mutaqin, Karim Kelfoun
{"title":"The “cold lava” flow debacle: Media-driven viral proliferation of a confused message over Marapi’s deadly lahars of 11 May 2024","authors":"Andrew J. L. Harris, Bachtiar Mutaqin, Karim Kelfoun","doi":"10.1007/s00445-024-01762-4","DOIUrl":"https://doi.org/10.1007/s00445-024-01762-4","url":null,"abstract":"","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"44 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1007/s00445-024-01758-0
D. Legrand, M. Perton, V. López-Landa, S. Ramos, J. Jon Selvas, M. Alatorre-Ibargüengoitia, R. Campion, L. Peiffer, J. L. Macías, G. Cisneros, C. Valdéz, S. De la Cruz-Reyna
El Chichón volcano is the most active volcano in the state of Chiapas, México, and experienced its last Plinian eruption (VEI = 5) in 1982. To better assess its volcanic hazard, we studied its readiness to erupt by estimating changes in its internal stress state. These stress changes are difficult to calculate accurately, for example in the absence of focal mechanisms, but their existence can be indirectly revealed by the presence of volcano-tectonic earthquakes, for example following a large tectonic earthquake. We show that the seismic rate recorded at El Chichón volcano increased slightly after the large Mw8.2 Tehuantepec earthquake of 8 September 2017, Chiapas. However, this rate quickly returned to its background level after only 2 months, without any external volcanic manifestations, suggesting that the volcano is not ready to erupt in the near future. Previous observations of slight increases in the volcanic seismicity rate following large earthquakes have been explained by the presence of active hydrothermal systems in the vicinity of the volcano. We propose a similar explanation for El Chichón volcano which is known for its large hydrothermal system. Furthermore, the characteristics of the 2017 seismicity (spatial and magnitude distributions), and the horizontal-to-vertical spectral ratio also confirm the presence of high amounts of water near the volcano. We show that the 2017 volcano-tectonic seismicity is of hydrothermal rather than magmatic origin, in agreement with recent independent geochemical and aeromagnetic studies.
{"title":"El Chichón volcanic activity before and after the Mw8.2, 2017, Chiapas earthquake, México. Is El Chichón ready to erupt?","authors":"D. Legrand, M. Perton, V. López-Landa, S. Ramos, J. Jon Selvas, M. Alatorre-Ibargüengoitia, R. Campion, L. Peiffer, J. L. Macías, G. Cisneros, C. Valdéz, S. De la Cruz-Reyna","doi":"10.1007/s00445-024-01758-0","DOIUrl":"https://doi.org/10.1007/s00445-024-01758-0","url":null,"abstract":"<p>El Chichón volcano is the most active volcano in the state of Chiapas, México, and experienced its last Plinian eruption (VEI = 5) in 1982. To better assess its volcanic hazard, we studied its readiness to erupt by estimating changes in its internal stress state. These stress changes are difficult to calculate accurately, for example in the absence of focal mechanisms, but their existence can be indirectly revealed by the presence of volcano-tectonic earthquakes, for example following a large tectonic earthquake. We show that the seismic rate recorded at El Chichón volcano increased slightly after the large M<sub>w</sub>8.2 Tehuantepec earthquake of 8 September 2017, Chiapas. However, this rate quickly returned to its background level after only 2 months, without any external volcanic manifestations, suggesting that the volcano is not ready to erupt in the near future. Previous observations of slight increases in the volcanic seismicity rate following large earthquakes have been explained by the presence of active hydrothermal systems in the vicinity of the volcano. We propose a similar explanation for El Chichón volcano which is known for its large hydrothermal system. Furthermore, the characteristics of the 2017 seismicity (spatial and magnitude distributions), and the horizontal-to-vertical spectral ratio also confirm the presence of high amounts of water near the volcano. We show that the 2017 volcano-tectonic seismicity is of hydrothermal rather than magmatic origin, in agreement with recent independent geochemical and aeromagnetic studies.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"35 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}