Effective fault module localization in substation critical equipment: an improved ant colony optimization and back propagation neural network approach

Wei Wang, Jianfei Zhang, Sai Wang, Xuewei Chen
{"title":"Effective fault module localization in substation critical equipment: an improved ant colony optimization and back propagation neural network approach","authors":"Wei Wang, Jianfei Zhang, Sai Wang, Xuewei Chen","doi":"10.1049/tje2.12315","DOIUrl":null,"url":null,"abstract":"Abstract The rapid development of substations has increased the demand for accurate and fast fault prediction systems. In order to achieve rapid localization and autonomous decision‐making of fault modules and types in substations, the article proposes a fault autonomous localization algorithm based on improved ant colony optimization (IACO) and back propagation neural network (BPNN). The fault data of the substation secondary equipment for training and testing the BPNN model is based on the actual operating equipment of the substation, which can significantly improve the reliability of the model results. In addition, the IACO is used to globally optimize the weights and thresholds of BPNN, and the number of hidden layer nodes in BPNN was analyzed to further improve the accuracy of the established fault prediction algorithm. The test results show that the fault prediction accuracy of the BPNN model optimized by IACO is 93.67%, which is significantly improved compared to the traditional BPNN and BPNN with ant colony optimization method (with an accuracy of 82.98% and 91.04%). The above results effectively demonstrate the high accuracy and effectiveness of the established prediction algorithm in processing data and locating faults, which can improve the maintenance and operational efficiency of substations.","PeriodicalId":22858,"journal":{"name":"The Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/tje2.12315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The rapid development of substations has increased the demand for accurate and fast fault prediction systems. In order to achieve rapid localization and autonomous decision‐making of fault modules and types in substations, the article proposes a fault autonomous localization algorithm based on improved ant colony optimization (IACO) and back propagation neural network (BPNN). The fault data of the substation secondary equipment for training and testing the BPNN model is based on the actual operating equipment of the substation, which can significantly improve the reliability of the model results. In addition, the IACO is used to globally optimize the weights and thresholds of BPNN, and the number of hidden layer nodes in BPNN was analyzed to further improve the accuracy of the established fault prediction algorithm. The test results show that the fault prediction accuracy of the BPNN model optimized by IACO is 93.67%, which is significantly improved compared to the traditional BPNN and BPNN with ant colony optimization method (with an accuracy of 82.98% and 91.04%). The above results effectively demonstrate the high accuracy and effectiveness of the established prediction algorithm in processing data and locating faults, which can improve the maintenance and operational efficiency of substations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变电站关键设备故障模块的有效定位:改进蚁群优化和反向传播神经网络方法
变电站的快速发展对准确、快速的故障预测系统提出了更高的要求。为了实现变电站故障模块和故障类型的快速定位和自主决策,提出了一种基于改进蚁群优化(IACO)和反向传播神经网络(BPNN)的故障自主定位算法。用于训练和测试BPNN模型的变电站二次设备的故障数据基于变电站的实际运行设备,可以显著提高模型结果的可靠性。此外,利用IACO对BPNN的权值和阈值进行全局优化,并对BPNN的隐层节点数进行分析,进一步提高了所建立的故障预测算法的准确率。测试结果表明,IACO优化后的BPNN模型的故障预测准确率为93.67%,与传统的BPNN和采用蚁群优化方法的BPNN(准确率分别为82.98%和91.04%)相比有显著提高。上述结果有效地证明了所建立的预测算法在数据处理和故障定位方面具有较高的准确性和有效性,可以提高变电站的维护和运行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel jittered‐carrier phase‐shifted sine pulse width modulation for cascaded H‐bridge converter An improved hybrid network‐on‐chip with flexible topology and frugal routing Magnetic sensors for contactless and non‐intrusive measurement of current in AC power systems Regulation of mixed convective flow in a horizontal channel with multiple slots using P, PI, and PID controllers BrutNet: A novel approach for violence detection and classification using DCNN with GRU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1