{"title":"Variable selection with the knockoffs: Composite null hypotheses","authors":"Mehrdad Pournaderi, Yu Xiang","doi":"10.1016/j.jspi.2023.106119","DOIUrl":null,"url":null,"abstract":"<div><p>The fixed-X knockoff filter is a flexible framework for variable selection with false discovery rate<span> (FDR) control in linear models with arbitrary design matrices<span><span> (of full column rank) and it allows for finite-sample selective inference via the Lasso estimates. In this paper, we extend the theory of the knockoff procedure to tests with composite null hypotheses, which are usually more relevant to real-world problems. The main technical challenge lies in handling composite </span>nulls in tandem with dependent features from arbitrary designs. We develop two methods for composite inference with the knockoffs, namely, shifted ordinary least-squares (S-OLS) and feature-response product perturbation (FRPP), building on new structural properties of test statistics under composite nulls. We also propose two heuristic variants of S-OLS method that outperform the celebrated Benjamini–Hochberg (BH) procedure for composite nulls, which serves as a heuristic baseline under dependent test statistics. Finally, we analyze the loss in FDR when the original knockoff procedure is naively applied on composite tests.</span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106119"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000885","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
The fixed-X knockoff filter is a flexible framework for variable selection with false discovery rate (FDR) control in linear models with arbitrary design matrices (of full column rank) and it allows for finite-sample selective inference via the Lasso estimates. In this paper, we extend the theory of the knockoff procedure to tests with composite null hypotheses, which are usually more relevant to real-world problems. The main technical challenge lies in handling composite nulls in tandem with dependent features from arbitrary designs. We develop two methods for composite inference with the knockoffs, namely, shifted ordinary least-squares (S-OLS) and feature-response product perturbation (FRPP), building on new structural properties of test statistics under composite nulls. We also propose two heuristic variants of S-OLS method that outperform the celebrated Benjamini–Hochberg (BH) procedure for composite nulls, which serves as a heuristic baseline under dependent test statistics. Finally, we analyze the loss in FDR when the original knockoff procedure is naively applied on composite tests.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.