{"title":"Data-driven density prediction of AlSi10Mg parts produced by laser powder bed fusion using machine learning and finite element simulation","authors":"Bastian Bossen, Maxim Kuehne, Oleg Kristanovski, Claus Emmelmann","doi":"10.2351/7.0001141","DOIUrl":null,"url":null,"abstract":"Powder bed fusion of metals using laser beam (PBF-LB/M) is a commonly used additive manufacturing process for the production of high-performance metal parts. AlSi10Mg is a widely used material in PBF-LB/M due to its excellent mechanical and thermal properties. However, the part quality of AlSi10Mg parts produced using PBF-LB/M can vary significantly depending on the process parameters. This study investigates the use of machine learning (ML) algorithms for the prediction of the resulting part density of AlSi10Mg parts produced using PBF-LB/M. An empirical data set of PBF-LB/M process parameters and resulting part densities is used to train ML models. Furthermore, a methodology is developed to allow density predictions based on simulated meltpool dimensions for different process parameters. This approach uses finite element simulations to calculate the meltpool dimensions, which are then used as input parameters for the ML models. The accuracy of this methodology is evaluated by comparing the predicted densities with experimental measurements. The results show that ML models can accurately predict the part density of AlSi10Mg parts produced using PBF-LB/M. Moreover, the methodology based on simulated meltpool dimensions can provide accurate predictions while significantly reducing the experimental effort needed in process development in PBF-LB/M. This study provides insights into the development of data-driven approaches for the optimization of PBF-LB/M process parameters and the prediction of part properties.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"21 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001141","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Powder bed fusion of metals using laser beam (PBF-LB/M) is a commonly used additive manufacturing process for the production of high-performance metal parts. AlSi10Mg is a widely used material in PBF-LB/M due to its excellent mechanical and thermal properties. However, the part quality of AlSi10Mg parts produced using PBF-LB/M can vary significantly depending on the process parameters. This study investigates the use of machine learning (ML) algorithms for the prediction of the resulting part density of AlSi10Mg parts produced using PBF-LB/M. An empirical data set of PBF-LB/M process parameters and resulting part densities is used to train ML models. Furthermore, a methodology is developed to allow density predictions based on simulated meltpool dimensions for different process parameters. This approach uses finite element simulations to calculate the meltpool dimensions, which are then used as input parameters for the ML models. The accuracy of this methodology is evaluated by comparing the predicted densities with experimental measurements. The results show that ML models can accurately predict the part density of AlSi10Mg parts produced using PBF-LB/M. Moreover, the methodology based on simulated meltpool dimensions can provide accurate predictions while significantly reducing the experimental effort needed in process development in PBF-LB/M. This study provides insights into the development of data-driven approaches for the optimization of PBF-LB/M process parameters and the prediction of part properties.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.