Jeanne Silvestre, Hélène de Baynast, Philippe Michaud, Cédric Delattre
{"title":"Optimization of chitosan adhesive properties by means of genipin crosslinking","authors":"Jeanne Silvestre, Hélène de Baynast, Philippe Michaud, Cédric Delattre","doi":"10.1080/00218464.2023.2270416","DOIUrl":null,"url":null,"abstract":"ABSTRACTChitosan is a polysaccharide resulting from chitin deacetylation. It has demonstrated interesting characteristics in the field of adhesion but loses most of its adhesive resistance in moist environment. A chemical crosslinking of chitosan with genipin has been implemented to improve its adhesive properties in the presence of water. The study of crosslinking kinetics using rheology revealed its dependency on crosslinking rate and chitosan concentration. The capacity of the chitosan-genipin systems for water absorption has been quantified as their Free Swelling Capacity. The cross-linkage of chitosan by genipin (1% w/w) decreased significantly its ability for water absorption. Finally, the adhesive strength of several chitosans be they supplemented or not with genipin and/or glycerol used as plasticizer have been performed on Thick Adherent Shear Test samples of beech wood according to standard EN 204:2016 and EN 205:2016. The chitosan adhesive formulation containing genipin and glycerol exhibits the better adhesive properties on wood and presents higher water resistance compared to the native chitosan formulation.KEYWORDS: Adhesivechitosanwoodgenipincross-linkage Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe data presented in this study are available on request from the corresponding author.Additional informationFundingThis work was supported by the Région AuRA(France), Pack Ambition Recherche ChitoGlue project n°DRV_SIP_2020-043_Chitoglue.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2270416","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTChitosan is a polysaccharide resulting from chitin deacetylation. It has demonstrated interesting characteristics in the field of adhesion but loses most of its adhesive resistance in moist environment. A chemical crosslinking of chitosan with genipin has been implemented to improve its adhesive properties in the presence of water. The study of crosslinking kinetics using rheology revealed its dependency on crosslinking rate and chitosan concentration. The capacity of the chitosan-genipin systems for water absorption has been quantified as their Free Swelling Capacity. The cross-linkage of chitosan by genipin (1% w/w) decreased significantly its ability for water absorption. Finally, the adhesive strength of several chitosans be they supplemented or not with genipin and/or glycerol used as plasticizer have been performed on Thick Adherent Shear Test samples of beech wood according to standard EN 204:2016 and EN 205:2016. The chitosan adhesive formulation containing genipin and glycerol exhibits the better adhesive properties on wood and presents higher water resistance compared to the native chitosan formulation.KEYWORDS: Adhesivechitosanwoodgenipincross-linkage Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe data presented in this study are available on request from the corresponding author.Additional informationFundingThis work was supported by the Région AuRA(France), Pack Ambition Recherche ChitoGlue project n°DRV_SIP_2020-043_Chitoglue.
期刊介绍:
The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.