IWAYS - Recycling of Heat, Water and Material across Multiple Sectors: Ceramic, Chemical and Steel Industry

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY Advances in Science and Technology-Research Journal Pub Date : 2023-10-19 DOI:10.4028/p-mdniz9
Luca Montorsi, Matteo Venturelli, Bertrand Delpech, Hussam Jouhara
{"title":"IWAYS - Recycling of Heat, Water and Material across Multiple Sectors: Ceramic, Chemical and Steel Industry","authors":"Luca Montorsi, Matteo Venturelli, Bertrand Delpech, Hussam Jouhara","doi":"10.4028/p-mdniz9","DOIUrl":null,"url":null,"abstract":"In the framework of the iWAYS project, a synergy between energy and water reclamation and exploitation is addressed by means of the development and the installation of a wide array of technologies in three different industrial sectors: ceramic tile manufacturing, aluminium fluoride production and steel tubes manufacturer. The aim of the project is the creation of customized and integrated systems to achieve a substantial reduction in the thermal waste and in the freshwater consumption; this is the principal challenge the iWAYS project is solving by developing a set of technologies capable of recovering water and energy from challenging exhaust streams for productive use in the industrial processes. iWAYS systems will then treat steam condensate to meet the water quality requirements of each industrial process, while the recovered heat will be used to reduce primary energy consumption. iWAYS will recover additional materials from flue gas such as valuable acids or particulates, improving the production’s raw material efficiency and reducing detrimental emissions to the environment. The iWAYS technology will provide a reduction in the freshwater consumption greater that the 30% in each industrial case; with regards to the energy recovery, iWAYS will recover 6 GWh/y in the ceramic sector, more than 5 GWh/y in the chemical scenario and approximately 1 GWh/y in the steel sector. The iWAYS solution will have a payback lower than 5 years.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-mdniz9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In the framework of the iWAYS project, a synergy between energy and water reclamation and exploitation is addressed by means of the development and the installation of a wide array of technologies in three different industrial sectors: ceramic tile manufacturing, aluminium fluoride production and steel tubes manufacturer. The aim of the project is the creation of customized and integrated systems to achieve a substantial reduction in the thermal waste and in the freshwater consumption; this is the principal challenge the iWAYS project is solving by developing a set of technologies capable of recovering water and energy from challenging exhaust streams for productive use in the industrial processes. iWAYS systems will then treat steam condensate to meet the water quality requirements of each industrial process, while the recovered heat will be used to reduce primary energy consumption. iWAYS will recover additional materials from flue gas such as valuable acids or particulates, improving the production’s raw material efficiency and reducing detrimental emissions to the environment. The iWAYS technology will provide a reduction in the freshwater consumption greater that the 30% in each industrial case; with regards to the energy recovery, iWAYS will recover 6 GWh/y in the ceramic sector, more than 5 GWh/y in the chemical scenario and approximately 1 GWh/y in the steel sector. The iWAYS solution will have a payback lower than 5 years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IWAYS -热,水和材料在多个部门的回收:陶瓷,化工和钢铁工业
在iWAYS项目的框架内,通过在三个不同的工业部门:瓷砖制造、氟化铝生产和钢管制造中开发和安装一系列广泛的技术,解决了能源与水的回收和开发之间的协同作用。该项目的目标是创建定制和集成系统,以实现大幅减少热废物和淡水消耗;这是iWAYS项目正在解决的主要挑战,该项目开发了一套技术,能够从具有挑战性的废气流中回收水和能源,用于工业生产过程。然后,iWAYS系统将处理蒸汽冷凝水,以满足每个工业过程的水质要求,而回收的热量将用于减少一次能源消耗。iWAYS将从烟气中回收额外的物质,如有价值的酸或颗粒,提高生产的原材料效率并减少对环境的有害排放。iWAYS技术将使淡水消耗减少30%,这在每个工业案例中都要大得多;在能源回收方面,iWAYS将在陶瓷行业回收6gwh /年,在化工行业回收超过5gwh /年,在钢铁行业回收约1gwh /年。iWAYS解决方案的投资回收期低于5年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
期刊最新文献
Investigation of a Shock Freezing Concept with Additional Electromagnetic Field Exposure Literature Review of Applicable Ballistic Materials for Temporary Wooden Building Envelopes Utilization of Levoglucosan Production By-Products Development of a Performance-Based Specification Model of Combat Clothing for the Procurement Process in Estonia Manufacturing of Bioactive Biodegradable Scaffolds by Stereolithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1