基于热传输与水混合的持续监测和数值模拟的泉水温度变异性解释: 以波兰南部Pieniny山脉Czarny Potok泉水为例

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Hydrogeology Journal Pub Date : 2023-10-19 DOI:10.1007/s10040-023-02729-z
Tomasz Gruszczyński, Marzena Szostakiewicz-Hołownia, Daniel Zaszewski
{"title":"基于热传输与水混合的持续监测和数值模拟的泉水温度变异性解释: 以波兰南部Pieniny山脉Czarny Potok泉水为例","authors":"Tomasz Gruszczyński, Marzena Szostakiewicz-Hołownia, Daniel Zaszewski","doi":"10.1007/s10040-023-02729-z","DOIUrl":null,"url":null,"abstract":"Abstract A numerical model of heat conduction and water mixing was developed, enabling a quantitative description of water temperature variability at a spring outflow. The study examined the Czarny Potok spring, located in the Pieniny Mountains of southern Poland, which was the subject of a 4-year series of water temperature observations. The presented model describes the soil and water environment in the immediate vicinity of the spring, assuming that the spring water temperature is shaped by the mixing of water flowing through the shallow zone that experiences seasonal fluctuation and the deeper neutral zone. It was also assumed that the conductive heat flow in the tested medium is conditioned by seasonal heating and cooling of the land surface. The thermal diffusivity of the bedrock was calculated on the basis of the phase shift and the attenuation of thermal amplitude at different depths, based on long-term monitoring of soil temperature. The heat conduction and water mixing models enabled calculation of the water temperature at the outflow. The obtained results are close to the empirical spring water temperatures. The estimated mean error was 0.075 °C and the mean absolute error was 0.188 °C. The results of the calculations suggest that the tested spring is recharged primarily by water flowing through the seasonal fluctuation zone (75%), while the remaining 25% captures a deeper circulation system associated with the neutral zone.","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10040-023-02729-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A numerical model of heat conduction and water mixing was developed, enabling a quantitative description of water temperature variability at a spring outflow. The study examined the Czarny Potok spring, located in the Pieniny Mountains of southern Poland, which was the subject of a 4-year series of water temperature observations. The presented model describes the soil and water environment in the immediate vicinity of the spring, assuming that the spring water temperature is shaped by the mixing of water flowing through the shallow zone that experiences seasonal fluctuation and the deeper neutral zone. It was also assumed that the conductive heat flow in the tested medium is conditioned by seasonal heating and cooling of the land surface. The thermal diffusivity of the bedrock was calculated on the basis of the phase shift and the attenuation of thermal amplitude at different depths, based on long-term monitoring of soil temperature. The heat conduction and water mixing models enabled calculation of the water temperature at the outflow. The obtained results are close to the empirical spring water temperatures. The estimated mean error was 0.075 °C and the mean absolute error was 0.188 °C. The results of the calculations suggest that the tested spring is recharged primarily by water flowing through the seasonal fluctuation zone (75%), while the remaining 25% captures a deeper circulation system associated with the neutral zone.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热传输与水混合的持续监测和数值模拟的泉水温度变异性解释: 以波兰南部Pieniny山脉Czarny Potok泉水为例
摘要建立了一个热传导与水混合的数值模型,可以定量描述泉水出水口的水温变化。该研究考察了位于波兰南部Pieniny山脉的Czarny Potok泉,该泉是为期4年的一系列水温观测的主题。该模型描述了泉水附近的土壤和水环境,假设泉水温度是由流经季节性波动的浅水区和较深的中性区混合形成的。还假定被测介质中的传导热流受陆地表面季节性加热和冷却的制约。在长期监测土壤温度的基础上,根据不同深度的相移和热幅值衰减计算基岩的热扩散系数。热传导模型和水混合模型实现了出口水温的计算。所得结果与实测泉水温度较为接近。估计平均误差为0.075°C,平均绝对误差为0.188°C。计算结果表明,测试泉水主要由流经季节波动区的水补充(75%),而其余25%则捕获与中性区相关的更深层次的循环系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrogeology Journal
Hydrogeology Journal 地学-地球科学综合
CiteScore
5.40
自引率
7.10%
发文量
128
审稿时长
6 months
期刊介绍: Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries. Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.
期刊最新文献
Characterising the discharge of hillslope karstic aquifers from hydrodynamic and physicochemical data (Sierra Seca, SE Spain) Delineating aquitard characteristics within a Silurian dolostone aquifer using high-density hydraulic head and fracture datasets Contribution of the time domain electromagnetic method to the study of the Kalahari transboundary multilayered aquifer systems in Southern Angola Where has hydrogeologic science been, and where is it going? Research trends in hydrogeology publishing over the past 60 years Emilio Custodio: a pioneer in groundwater management and key reference for hydrogeologists worldwide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1