首页 > 最新文献

Hydrogeology Journal最新文献

英文 中文
Horizon-assisted lithologic modeling: understanding Mississippi Embayment and Coastal Lowlands aquifer systems in Louisiana and southwestern Mississippi, USA 地层辅助岩性建模:了解美国路易斯安那州和密西西比州西南部的密西西比河内湾和沿海低地含水层系统
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s10040-024-02804-z
Shuo Yang, Frank T-C Tsai, Lance D. Yarbrough

The Mississippi Embayment aquifer system (MEAS) and the Coastal Lowlands aquifer system (CLAS) are two principal aquifers in the US Gulf Coastal Plain. Despite their importance to the region, a comprehensive characterization of these aquifers has not been achieved yet. In this study, the horizon-assisted lithologic modeling (HALM) method is introduced to integrate horizon structures and well log data for aquifer characterization. By employing horizon restorations, the HALM method proves to be versatile in incorporating various geologic features into lithologic models. The HALM method was applied to characterize both the MEAS and the CLAS in the Louisiana and southwestern Mississippi regions. The resulting large-scale high-resolution hydrostratigraphic model provides a highly accurate representation of aquifer structures in regionally extensive hydrogeologic units, including synclines, angular unconformities, and faulting. Notably, the model highlights the presence of surficial coarse sediments, indicating significant groundwater recharge zones for the Southern Hills aquifer system, the Chicot aquifer, and the Sparta aquifer. Additionally, the Mississippi River alluvial aquifer and the Chicot aquifer are found to be thick and shallow, making them easily accessible for irrigation purposes. Furthermore, the model reveals significant connections between rivers and alluvial aquifers in northern Louisiana, with reduced river–aquifer contact as one approaches the Gulf of Mexico. Comparing the two aquifer systems, the CLAS exhibits relatively thick and extensive aquifers compared to the MEAS. This study not only contributes to advancements in geologic modeling techniques but also enhances the understanding of regional hydrogeology in the US Gulf Coastal Plain.

密西西比河内湾含水层系统(MEAS)和沿海低地含水层系统(CLAS)是美国海湾沿海平原的两个主要含水层。尽管这两个含水层对该地区非常重要,但目前尚未对其进行全面的特征描述。在这项研究中,引入了地层辅助岩性建模(HALM)方法,将地层结构和测井数据整合到含水层特征描述中。通过采用地层复原,HALM 方法被证明在将各种地质特征纳入岩性模型方面具有多功能性。HALM 方法被用于描述路易斯安那州和密西西比州西南部地区的 MEAS 和 CLAS 的特征。由此产生的大尺度高分辨率水文地质模型高度准确地反映了区域广泛的水文地质单元中的含水层结构,包括突岩、角状不整合和断层。值得注意的是,该模型突出显示了表层粗沉积物的存在,表明南部丘陵含水层系统、奇科特含水层和斯巴达含水层具有重要的地下水补给区。此外,密西西比河冲积含水层和奇科特含水层厚度大,埋藏浅,便于灌溉。此外,该模型还揭示了路易斯安那州北部河流与冲积含水层之间的重要联系,在接近墨西哥湾时,河流与含水层之间的接触减少。对比两个含水层系统,CLAS 的含水层相对 MEAS 厚而宽。这项研究不仅推动了地质建模技术的发展,而且加深了人们对美国海湾沿海平原地区水文地质的了解。
{"title":"Horizon-assisted lithologic modeling: understanding Mississippi Embayment and Coastal Lowlands aquifer systems in Louisiana and southwestern Mississippi, USA","authors":"Shuo Yang, Frank T-C Tsai, Lance D. Yarbrough","doi":"10.1007/s10040-024-02804-z","DOIUrl":"https://doi.org/10.1007/s10040-024-02804-z","url":null,"abstract":"<p>The Mississippi Embayment aquifer system (MEAS) and the Coastal Lowlands aquifer system (CLAS) are two principal aquifers in the US Gulf Coastal Plain. Despite their importance to the region, a comprehensive characterization of these aquifers has not been achieved yet. In this study, the horizon-assisted lithologic modeling (HALM) method is introduced to integrate horizon structures and well log data for aquifer characterization. By employing horizon restorations, the HALM method proves to be versatile in incorporating various geologic features into lithologic models. The HALM method was applied to characterize both the MEAS and the CLAS in the Louisiana and southwestern Mississippi regions. The resulting large-scale high-resolution hydrostratigraphic model provides a highly accurate representation of aquifer structures in regionally extensive hydrogeologic units, including synclines, angular unconformities, and faulting. Notably, the model highlights the presence of surficial coarse sediments, indicating significant groundwater recharge zones for the Southern Hills aquifer system, the Chicot aquifer, and the Sparta aquifer. Additionally, the Mississippi River alluvial aquifer and the Chicot aquifer are found to be thick and shallow, making them easily accessible for irrigation purposes. Furthermore, the model reveals significant connections between rivers and alluvial aquifers in northern Louisiana, with reduced river–aquifer contact as one approaches the Gulf of Mexico. Comparing the two aquifer systems, the CLAS exhibits relatively thick and extensive aquifers compared to the MEAS. This study not only contributes to advancements in geologic modeling techniques but also enhances the understanding of regional hydrogeology in the US Gulf Coastal Plain.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the mechanism of groundwater temperature changes associated with longwall mining in a coalfield, China, using the extreme gradient boosting method 利用极端梯度提升法破解与中国煤田长壁开采相关的地下水温度变化机理
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s10040-024-02807-w
Shen Qu, Guangcai Wang, Shouchuan Zhang, Zheming Shi, Xiangyang Liang, Ankun Luo

Investigations focusing on the impacts of mining on groundwater systems typically provide a qualitative analysis of groundwater flow and chemistry, whereas relatively few studies quantitatively analyze groundwater temperature perturbations induced by mining. This study aims to identify the hydrogeological mechanism responsible for changes to groundwater temperature associated with longwall coal mining. Here, the extreme gradient boosting (XGBoost) method was used to construct three models at different phases of mining disturbance to identify the factors governing groundwater temperature dynamics: (1) a pre-disturbance model; (2) an in-disturbance model; and (3) a post-disturbance model. The feature relative importance (FRI) of input variables contributing to groundwater temperature dynamics was quantified for a long-term groundwater monitoring dataset collected from the Ningtiaota Coalfield, Ordos Basin, China. Pre-mining disturbance groundwater temperatures were stable, and the XGBoost model identified the groundwater level of the respective monitoring wells to be the greatest predictor for variation in groundwater temperature. During mining disturbance, proximal monitoring wells exhibited a decline in groundwater temperature, where the FRI of groundwater temperature in an upgradient monitoring well increased by 151–662% relative to the pre-mining disturbance model. The monitoring of aquifer properties and stable isotope composition of groundwaters provided additional evidence to suggest groundwater temperature decreases were associated with increased recharge contributions from surficial Quaternary aquifers. Post-mining disturbance, groundwater temperature and aquifer specific storage demonstrated recovered to pre-mining conditions. This study provides insights into mining-induced groundwater temperature dynamics as a result of changes to hydraulic connection between aquifers.

针对采矿对地下水系统影响的调查通常对地下水流和化学性质进行定性分析,而对采矿引起的地下水温度扰动进行定量分析的研究相对较少。本研究旨在确定与长壁煤矿开采相关的地下水温度变化的水文地质机制。本研究采用极端梯度提升(XGBoost)方法构建了采矿扰动不同阶段的三个模型,以确定地下水温度动态变化的影响因素:(1)扰动前模型;(2)扰动中模型;(3)扰动后模型。针对从中国鄂尔多斯盆地宁条塔煤田收集的长期地下水监测数据集,对地下水温度动态输入变量的特征相对重要性(FRI)进行了量化。采矿扰动前地下水温度稳定,XGBoost 模型确定各监测井的地下水位是地下水温度变化的最大预测因子。在采矿扰动期间,近距离监测井的地下水温度出现下降,与采矿扰动前的模型相比,上游监测井的地下水温度 FRI 上升了 151-662%。对含水层性质和地下水稳定同位素组成的监测提供了更多证据,表明地下水温度的下降与第四纪表层含水层补给量的增加有关。采矿扰动后,地下水温度和含水层比储量恢复到采矿前的状态。这项研究为了解含水层之间水力联系的变化导致的采矿引起的地下水温度动态提供了见解。
{"title":"Deciphering the mechanism of groundwater temperature changes associated with longwall mining in a coalfield, China, using the extreme gradient boosting method","authors":"Shen Qu, Guangcai Wang, Shouchuan Zhang, Zheming Shi, Xiangyang Liang, Ankun Luo","doi":"10.1007/s10040-024-02807-w","DOIUrl":"https://doi.org/10.1007/s10040-024-02807-w","url":null,"abstract":"<p>Investigations focusing on the impacts of mining on groundwater systems typically provide a qualitative analysis of groundwater flow and chemistry, whereas relatively few studies quantitatively analyze groundwater temperature perturbations induced by mining. This study aims to identify the hydrogeological mechanism responsible for changes to groundwater temperature associated with longwall coal mining. Here, the extreme gradient boosting (XGBoost) method was used to construct three models at different phases of mining disturbance to identify the factors governing groundwater temperature dynamics: (1) a pre-disturbance model; (2) an in-disturbance model; and (3) a post-disturbance model. The feature relative importance (FRI) of input variables contributing to groundwater temperature dynamics was quantified for a long-term groundwater monitoring dataset collected from the Ningtiaota Coalfield, Ordos Basin, China. Pre-mining disturbance groundwater temperatures were stable, and the XGBoost model identified the groundwater level of the respective monitoring wells to be the greatest predictor for variation in groundwater temperature. During mining disturbance, proximal monitoring wells exhibited a decline in groundwater temperature, where the FRI of groundwater temperature in an upgradient monitoring well increased by 151–662% relative to the pre-mining disturbance model. The monitoring of aquifer properties and stable isotope composition of groundwaters provided additional evidence to suggest groundwater temperature decreases were associated with increased recharge contributions from surficial Quaternary aquifers. Post-mining disturbance, groundwater temperature and aquifer specific storage demonstrated recovered to pre-mining conditions. This study provides insights into mining-induced groundwater temperature dynamics as a result of changes to hydraulic connection between aquifers.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of groundwater recharge from precipitation by using tritium and chloride concentrations in the Chinese loess unsaturated zone in Inner Mongolia, China 利用中国内蒙古黄土非饱和带的氚和氯浓度估算降水对地下水的补给量
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-24 DOI: 10.1007/s10040-024-02798-8
Jun Liu, Zong-yu Chen, Zhen-long Nie, Yan-liang Tian

Groundwater recharge estimation is important for groundwater resource management especially in arid and semiarid areas, such as Loess Plateau, China. Here, loess deposits form regionally important aquifers, typified by a thick unsaturated zone, facilitating the application of environmental tracers to estimate groundwater recharge rates. In this study, the chloride mass balance (CMB) method was used to estimate groundwater recharge from precipitation for two sites in Inner Mongolia, China. Due to the uncertainty in determining the prerequisite chloride input flux for the CMB method, three different techniques (artificial 3H tracer method, the measured chloride concentration in precipitation, and 1963 tritium peak method) were used to determine the chloride input flux to increase the reliability of the calculated groundwater recharge rates. The different chloride input flux results obtained from the different techniques were found to be consistent. The average groundwater recharge rate calculated from the chloride mass balance method is 0.038 m/year. The groundwater recharge rate obtained in this study was found to be consistent with groundwater recharge rates derived from similar studies in the Loess Plateau.

地下水补给估算对于地下水资源管理非常重要,尤其是在中国黄土高原等干旱和半干旱地区。在这里,黄土沉积形成了区域性重要含水层,其典型特征是存在较厚的非饱和带,这为应用环境示踪剂估算地下水补给率提供了便利。本研究采用氯化物质量平衡法(CMB)估算了中国内蒙古两个地点的降水对地下水的补给量。由于确定 CMB 法所需的氯化物输入通量存在不确定性,因此采用了三种不同的技术(人工 3H 示踪剂法、降水中氯化物浓度测量法和 1963 氚峰值法)来确定氯化物输入通量,以提高计算的地下水补给率的可靠性。不同技术得出的不同氯化物输入通量结果是一致的。根据氯化物质量平衡法计算得出的平均地下水补给率为 0.038 米/年。这项研究得出的地下水补给率与黄土高原类似研究得出的地下水补给率一致。
{"title":"Estimation of groundwater recharge from precipitation by using tritium and chloride concentrations in the Chinese loess unsaturated zone in Inner Mongolia, China","authors":"Jun Liu, Zong-yu Chen, Zhen-long Nie, Yan-liang Tian","doi":"10.1007/s10040-024-02798-8","DOIUrl":"https://doi.org/10.1007/s10040-024-02798-8","url":null,"abstract":"<p>Groundwater recharge estimation is important for groundwater resource management especially in arid and semiarid areas, such as Loess Plateau, China. Here, loess deposits form regionally important aquifers, typified by a thick unsaturated zone, facilitating the application of environmental tracers to estimate groundwater recharge rates. In this study, the chloride mass balance (CMB) method was used to estimate groundwater recharge from precipitation for two sites in Inner Mongolia, China. Due to the uncertainty in determining the prerequisite chloride input flux for the CMB method, three different techniques (artificial <sup>3</sup>H tracer method, the measured chloride concentration in precipitation, and 1963 tritium peak method) were used to determine the chloride input flux to increase the reliability of the calculated groundwater recharge rates. The different chloride input flux results obtained from the different techniques were found to be consistent. The average groundwater recharge rate calculated from the chloride mass balance method is 0.038 m/year. The groundwater recharge rate obtained in this study was found to be consistent with groundwater recharge rates derived from similar studies in the Loess Plateau.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De-risking green energy from mine waters by developing a robust hydrogeological conceptual model of the UK Geoenergy Observatory in Glasgow 通过为格拉斯哥英国地质能源观测站开发一个强大的水文地质概念模型,降低矿井水绿色能源的风险
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-19 DOI: 10.1007/s10040-024-02778-y
Andres Gonzalez Quiros, Donald John MacAllister, Alan MacDonald, Barbara Palumbo-Roe, Jenny Bearcock, Brighid Ó Dochartaigh, Eileen Callaghan, Tim Kearsey, Kyle Walker-Verkuil, Alison Monaghan

Mine-water geothermal resources have potential to provide low-carbon heating and cooling in many areas; however, this potential has not been fully realised due to technical, economic and policy challenges. The UK Geoenergy Observatory (UKGEOS) in Glasgow was developed to provide an at-scale research facility designed to help de-risk mine-water geothermal usage. The limited knowledge of the hydrogeological systems altered by former mining activities is a key determinant of the long-term sustainability of water and heat abstraction/reinjection. This work presents a hydrogeological conceptual model developed using groundwater monitoring data obtained during the construction of the Observatory between 2020 and 2022, results from initial pumping tests performed in 2020, and results of hydrochemistry analysis from 25 sampling rounds collected between 2019 and 2022. The analysis of the data provides evidence of the dominant role of mine workings in controlling groundwater flow, with high intra-mine connectivity; increased fracturing in sandstones above mine workings; and limited inter-mine connectivity. Groundwater recharge is meteoric, mean residence times are >50 years, and there is a general upwards circulation from the deeper mine levels to the superficial deposits and the River Clyde. Faults play a significant role in limiting the extent of the highly transmissive mine workings, but there remains uncertainty surrounding the role of the faults in connecting different mine workings and their hydraulic behaviour in nonmined units. The conceptual model, that will be refined as new data become available, will be used to help guide monitoring and sampling programs and plan research activities in the Observatory.

矿井水地热资源具有为许多地区提供低碳供暖和制冷的潜力;然而,由于技术、经济和政策方面的挑战,这一潜力尚未得到充分发挥。位于格拉斯哥的英国地质能源观测站(UKGEOS)旨在提供大规模的研究设施,帮助降低矿井水地热利用的风险。对以前采矿活动所改变的水文地质系统的了解有限,这是决定取水和取热/回注的长期可持续性的关键因素。这项工作介绍了一个水文地质概念模型,该模型是利用 2020 年至 2022 年观测站建设期间获得的地下水监测数据、2020 年进行的初步抽水测试结果以及 2019 年至 2022 年收集的 25 轮取样的水化学分析结果开发的。数据分析结果表明,矿井工作面在控制地下水流方面发挥着主导作用,矿井内部的连通性很高;矿井工作面上方砂岩的断裂增加;矿井之间的连通性有限。地下水补给为流体补给,平均滞留时间为 50 年,从较深的矿井水平面到浅层沉积物和克莱德河普遍呈上升循环。断层在限制高透水性矿坑范围方面发挥着重要作用,但断层在连接不同矿坑方面的作用及其在非矿坑单元中的水力行为仍存在不确定性。该概念模型将随着新数据的获得而不断完善,并将用于指导监测和取样计划以及规划观测站的研究活动。
{"title":"De-risking green energy from mine waters by developing a robust hydrogeological conceptual model of the UK Geoenergy Observatory in Glasgow","authors":"Andres Gonzalez Quiros, Donald John MacAllister, Alan MacDonald, Barbara Palumbo-Roe, Jenny Bearcock, Brighid Ó Dochartaigh, Eileen Callaghan, Tim Kearsey, Kyle Walker-Verkuil, Alison Monaghan","doi":"10.1007/s10040-024-02778-y","DOIUrl":"https://doi.org/10.1007/s10040-024-02778-y","url":null,"abstract":"<p>Mine-water geothermal resources have potential to provide low-carbon heating and cooling in many areas; however, this potential has not been fully realised due to technical, economic and policy challenges. The UK Geoenergy Observatory (UKGEOS) in Glasgow was developed to provide an at-scale research facility designed to help de-risk mine-water geothermal usage. The limited knowledge of the hydrogeological systems altered by former mining activities is a key determinant of the long-term sustainability of water and heat abstraction/reinjection. This work presents a hydrogeological conceptual model developed using groundwater monitoring data obtained during the construction of the Observatory between 2020 and 2022, results from initial pumping tests performed in 2020, and results of hydrochemistry analysis from 25 sampling rounds collected between 2019 and 2022. The analysis of the data provides evidence of the dominant role of mine workings in controlling groundwater flow, with high intra-mine connectivity; increased fracturing in sandstones above mine workings; and limited inter-mine connectivity. Groundwater recharge is meteoric, mean residence times are &gt;50 years, and there is a general upwards circulation from the deeper mine levels to the superficial deposits and the River Clyde. Faults play a significant role in limiting the extent of the highly transmissive mine workings, but there remains uncertainty surrounding the role of the faults in connecting different mine workings and their hydraulic behaviour in nonmined units. The conceptual model, that will be refined as new data become available, will be used to help guide monitoring and sampling programs and plan research activities in the Observatory.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of weathering on permeability-depth trends in bedrock aquifers 风化对基岩含水层渗透深度趋势的影响
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-14 DOI: 10.1007/s10040-024-02803-0
S. Worthington
{"title":"Impact of weathering on permeability-depth trends in bedrock aquifers","authors":"S. Worthington","doi":"10.1007/s10040-024-02803-0","DOIUrl":"https://doi.org/10.1007/s10040-024-02803-0","url":null,"abstract":"","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141344395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of isoscapes (δD, δ18O and tritium) in groundwater in the semiarid northeast region of Mexico 墨西哥东北部半干旱地区地下水中的等离子体(δD、δ18O 和氚)分析
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-13 DOI: 10.1007/s10040-024-02802-1
Odalys J. Ibarra-Alejos, René Ventura-Houle, Juan F. Morales, Bárbara A. Macías, Lorenzo Heyer
{"title":"Analysis of isoscapes (δD, δ18O and tritium) in groundwater in the semiarid northeast region of Mexico","authors":"Odalys J. Ibarra-Alejos, René Ventura-Houle, Juan F. Morales, Bárbara A. Macías, Lorenzo Heyer","doi":"10.1007/s10040-024-02802-1","DOIUrl":"https://doi.org/10.1007/s10040-024-02802-1","url":null,"abstract":"","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
水化学数据在解释法国Baget岩溶系统流动和运输过程的应用潜力 水化学数据在解释法国Baget岩溶系统流动和运输过程的应用潜力
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-12 DOI: 10.1007/s10040-024-02801-2
B. Richieri, D. Bittner, Vianney Sivelle, Andreas Hartmann, David Labat, Gabriele Chiogna
{"title":"水化学数据在解释法国Baget岩溶系统流动和运输过程的应用潜力","authors":"B. Richieri, D. Bittner, Vianney Sivelle, Andreas Hartmann, David Labat, Gabriele Chiogna","doi":"10.1007/s10040-024-02801-2","DOIUrl":"https://doi.org/10.1007/s10040-024-02801-2","url":null,"abstract":"","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacto del cambio climático en las lentes de agua dulce de las islas de barrera y sus zonas de transición: un estudio multiparamétrico 气候变化对屏障岛及其过渡区淡水透镜的影响:多参数研究
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-10 DOI: 10.1007/s10040-024-02800-3
Lena Thissen, Janek Greskowiak, Lidia Gaslikova, Gudrun Massmann
{"title":"Impacto del cambio climático en las lentes de agua dulce de las islas de barrera y sus zonas de transición: un estudio multiparamétrico","authors":"Lena Thissen, Janek Greskowiak, Lidia Gaslikova, Gudrun Massmann","doi":"10.1007/s10040-024-02800-3","DOIUrl":"https://doi.org/10.1007/s10040-024-02800-3","url":null,"abstract":"","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141363512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The DECOVALEX international collaboration on modeling of coupled subsurface processes and its contribution to confidence building in radioactive waste disposal 关于地下耦合过程建模的 DECOVALEX 国际合作及其对建立放射性废物处置信心的贡献
IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-06-08 DOI: 10.1007/s10040-024-02799-7
J. Birkholzer, Alexander E. Bond, Chin-Fu Tsang
{"title":"The DECOVALEX international collaboration on modeling of coupled subsurface processes and its contribution to confidence building in radioactive waste disposal","authors":"J. Birkholzer, Alexander E. Bond, Chin-Fu Tsang","doi":"10.1007/s10040-024-02799-7","DOIUrl":"https://doi.org/10.1007/s10040-024-02799-7","url":null,"abstract":"","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141369905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review: Andesitic aquifers—hydrogeological conceptual models and insights relevant to applied hydrogeology 回顾:安山岩含水层--水文地质概念模型和与应用水文地质相关的见解
IF 2.8 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-01 DOI: 10.1007/s10040-024-02784-0
B. Baud, P. Lachassagne, M. Dumont, A. Toulier, Heru Hendrayana, Arif Fadillah, N. Dorfliger

Research on the hydrogeology of andesitic volcanic aquifers in subduction areas is reviewed. Andesitic aquifers are of high interest in volcanic arc islands and subduction zones, where they constitute a strategic water resource. This review gathers a compilation of worldwide results and case studies to propose a generic hydrogeological conceptual model (GHCM). It is based on the geological conceptual model splitting the volcanic edifice, from upstream to downstream, into central, proximal, medial and distal zones. In this geological structure, the GHCM identifies where the main aquifer types (fractured lava, pyroclastic flows, and the volcano-sedimentary basins downstream) and the typical aquitards (lahars, fine pyroclastic falls and surges, indurated pyroclastic flow, and weathered rocks) are structured and organized. To integrate the evolution of volcanoes and some specific volcanic activities, a specific GHCM for old andesitic volcanoes or andesitic shield volcanoes is detailed. The paper also describes how the GHCM results are of use to hydrogeologists in terms of scale (from the lithological units to the regional scale), to effectively site water wells, and to sustainably manage groundwater resources in such aquifers. Among these various scales, the volcanic “flank continuum” is presented as the most adapted to support groundwater resources management. Several ways to improve this GHCM are suggested, notably to better consider the geological complexity of these aquifers.

对俯冲区安山质火山含水层的水文地质研究进行了综述。安山质含水层在火山弧岛和俯冲带具有重要意义,是一种战略性水资源。本综述汇集了世界各地的研究成果和案例研究,提出了一个通用水文地质概念模型(GHCM)。该模型以地质概念模型为基础,将火山大厦从上游到下游分为中心区、近端区、中间区和远端区。在这一地质结构中,全球含水层概念模型确定了主要含水层类型(碎裂熔岩、火成岩流和下游的火山沉积盆地)和典型含水层(拉哈斯、细小火成岩落差和涌流、硬化火成岩流和风化岩)的结构和组织。为了整合火山的演变和一些特定的火山活动,本文详细介绍了针对古老安山质火山或安山质盾状火山的特定全球含水层模型。本文还介绍了全球高含水层模型的结果如何在不同尺度(从岩性单元到区域尺度)上为水文地质学家所用,如何有效地确定水井的位置,以及如何可持续地管理这些含水层中的地下水资源。在这些不同的尺度中,火山 "侧翼连续体 "被认为是最适合支持地下水资源管理的尺度。提出了改进这一全球地下水位模型的几种方法,特别是更好地考虑这些含水层的地质复杂性。
{"title":"Review: Andesitic aquifers—hydrogeological conceptual models and insights relevant to applied hydrogeology","authors":"B. Baud, P. Lachassagne, M. Dumont, A. Toulier, Heru Hendrayana, Arif Fadillah, N. Dorfliger","doi":"10.1007/s10040-024-02784-0","DOIUrl":"https://doi.org/10.1007/s10040-024-02784-0","url":null,"abstract":"<p>Research on the hydrogeology of andesitic volcanic aquifers in subduction areas is reviewed. Andesitic aquifers are of high interest in volcanic arc islands and subduction zones, where they constitute a strategic water resource. This review gathers a compilation of worldwide results and case studies to propose a generic hydrogeological conceptual model (GHCM). It is based on the geological conceptual model splitting the volcanic edifice, from upstream to downstream, into central, proximal, medial and distal zones. In this geological structure, the GHCM identifies where the main aquifer types (fractured lava, pyroclastic flows, and the volcano-sedimentary basins downstream) and the typical aquitards (lahars, fine pyroclastic falls and surges, indurated pyroclastic flow, and weathered rocks) are structured and organized. To integrate the evolution of volcanoes and some specific volcanic activities, a specific GHCM for old andesitic volcanoes or andesitic shield volcanoes is detailed. The paper also describes how the GHCM results are of use to hydrogeologists in terms of scale (from the lithological units to the regional scale), to effectively site water wells, and to sustainably manage groundwater resources in such aquifers. Among these various scales, the volcanic “flank continuum” is presented as the most adapted to support groundwater resources management. Several ways to improve this GHCM are suggested, notably to better consider the geological complexity of these aquifers.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Hydrogeology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1