The effect of PID control scheme on the course-keeping of ship in oblique stern waves

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2023-09-01 DOI:10.21278/brod74408
Yunbo Li
{"title":"The effect of PID control scheme on the course-keeping of ship in oblique stern waves","authors":"Yunbo Li","doi":"10.21278/brod74408","DOIUrl":null,"url":null,"abstract":"Sailing in oblique stern waves causes a ship to make sharp turns and uncontrollable course deviation, which is accompanied by a large heel and sometimes leads to capsizing. Studying the control algorithm in oblique stern waves is imperative because an excellent controller scheme can improve the ship’s course-keeping stability. This paper uses the Maneuvering Modelling Group (MMG) method based on hydrodynamic derivatives and the Computational Fluid Dynamics (CFD)-based self-navigation simulation to simulate ship navigation in waves. This study examines the effect of proportion-integral-derivative (PID) controller schemes on the stability of course maintenance based on hydrodynamic derivatives and 3DOF MMG methods. Then, the optimized PID control parameters are used to simulate the ship’s 6DOF self-propulsion navigation in oblique waves using the CFD method. The nonlinear phenomena during the process, such as side-hull emergency, slamming, and green water, are considered. This study found that the range of the control bandwidth should be optimized based on the ship's heading and wave parameters.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21278/brod74408","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Sailing in oblique stern waves causes a ship to make sharp turns and uncontrollable course deviation, which is accompanied by a large heel and sometimes leads to capsizing. Studying the control algorithm in oblique stern waves is imperative because an excellent controller scheme can improve the ship’s course-keeping stability. This paper uses the Maneuvering Modelling Group (MMG) method based on hydrodynamic derivatives and the Computational Fluid Dynamics (CFD)-based self-navigation simulation to simulate ship navigation in waves. This study examines the effect of proportion-integral-derivative (PID) controller schemes on the stability of course maintenance based on hydrodynamic derivatives and 3DOF MMG methods. Then, the optimized PID control parameters are used to simulate the ship’s 6DOF self-propulsion navigation in oblique waves using the CFD method. The nonlinear phenomena during the process, such as side-hull emergency, slamming, and green water, are considered. This study found that the range of the control bandwidth should be optimized based on the ship's heading and wave parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斜尾波中PID控制方案对船舶航向保持的影响
在斜尾波中航行会使船舶发生急转弯和无法控制的航向偏离,并伴有较大的后跟,有时会导致倾覆。研究斜尾波下的控制算法是十分必要的,因为一个好的控制方案可以提高船舶的航向保持稳定性。本文采用基于水动力导数的机动建模组(MMG)方法和基于计算流体力学(CFD)的自航仿真方法对船舶在波浪中的航行进行了仿真。本文研究了比例-积分-导数(PID)控制方案对基于流体动力导数和3d - of - MMG方法的航向维持稳定性的影响。然后,利用优化后的PID控制参数,利用CFD方法对船舶在斜波中进行了6DOF自推进航行仿真。在此过程中,考虑了舷侧急变、轰击、绿水等非线性现象。研究发现,控制带宽的范围应根据船舶航向和波浪参数进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Application of an offline grey box method for predicting the manoeuvring performance Four-quadrant propeller hydrodynamic performance mapping for improving ship motion predictions Optimization of exhaust ejector with lobed nozzle for marine gas turbine Control method for the ship track and speed in curved channels Research on temperature distribution in container ship with Type-B LNG fuel tank based on CFD and analytical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1