David Esteban Farfan-Guillen, Paulo de Tarso Neves Junior, Alexandre de Almeida Prado Pohl
{"title":"Assessment of the Illumination and Communication Performance of a Visible Light System in an Indoor Scenario","authors":"David Esteban Farfan-Guillen, Paulo de Tarso Neves Junior, Alexandre de Almeida Prado Pohl","doi":"10.1590/2179-10742023v22i3271533","DOIUrl":null,"url":null,"abstract":"Visible-light communication (VLC) is a technique that employs light-emitting diodes (LEDs) and photodiodes to enable communication in indoor scenarios. VLC has gathered increasing attention due to its potential for data transmission across a broad unregulated spectrum (430-790 THz). One of VLC’s primary objectives is to utilize pre-existing LED infrastructures as access points. In this investigation, we assess the performance of an indoor VLC link by measuring the illumination characteristics of commercial LED luminaire. The results are utilized to design an electronic transmission and reception circuit. An analysis was conducted to identify the optimal operating point that ensures adequate lighting and reliable communication. The designed circuits exhibited a bandwidth of 50 MHz at -3 dB. Characterization of the luminaire demonstrated that a single luminaire provided the illumination (486 lx) within the recommended range at 1.6 m. For data transmission, the variable pulse position modulation (VPPM) and the orthogonal frequency-division multiplexing (OFDM) were employed in different configurations. The bit error rate (BER) results, with a threshold of ≤ 10-3, revealed that VPPM performed best at a distance of 1.9 m with a rate of 12.5 Mbps. Conversely, OFDM modulation achieved optimal performance at 1.75 m, providing a transmission rate of 30 Mbps.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i3271533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Visible-light communication (VLC) is a technique that employs light-emitting diodes (LEDs) and photodiodes to enable communication in indoor scenarios. VLC has gathered increasing attention due to its potential for data transmission across a broad unregulated spectrum (430-790 THz). One of VLC’s primary objectives is to utilize pre-existing LED infrastructures as access points. In this investigation, we assess the performance of an indoor VLC link by measuring the illumination characteristics of commercial LED luminaire. The results are utilized to design an electronic transmission and reception circuit. An analysis was conducted to identify the optimal operating point that ensures adequate lighting and reliable communication. The designed circuits exhibited a bandwidth of 50 MHz at -3 dB. Characterization of the luminaire demonstrated that a single luminaire provided the illumination (486 lx) within the recommended range at 1.6 m. For data transmission, the variable pulse position modulation (VPPM) and the orthogonal frequency-division multiplexing (OFDM) were employed in different configurations. The bit error rate (BER) results, with a threshold of ≤ 10-3, revealed that VPPM performed best at a distance of 1.9 m with a rate of 12.5 Mbps. Conversely, OFDM modulation achieved optimal performance at 1.75 m, providing a transmission rate of 30 Mbps.
期刊介绍:
The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.