Hasan Caglar, Y. Altay Aksoy, Sridhar Idapalapati, Baris Caglar, Mohit Sharma, Chian Kerm Sin
{"title":"Debonding-on-demand Fe<sub>3</sub>O<sub>4</sub>-epoxy adhesively bonded dissimilar joints via electromagnetic induction heating","authors":"Hasan Caglar, Y. Altay Aksoy, Sridhar Idapalapati, Baris Caglar, Mohit Sharma, Chian Kerm Sin","doi":"10.1080/00218464.2023.2256670","DOIUrl":null,"url":null,"abstract":"We investigated the debonding on-demand (DoD) of adhesively bonded hybrid dissimilar joints by applying electromagnetic induction heating to the joint overlap section, wherein the epoxy resin is reinforced with iron oxide (Fe3O4) particles. Ti-6Al-4 V adherends were bonded with CFRP or GFRP adherends using neat/modified epoxy adhesive. DoD tests revealed that eddy current heating of Ti-6Al-4 V was a dominant heating mechanism of the joints while both eddy current and magnetic hysteresis of CFRP and Fe3O4 acted as a secondary heating factor. A low content Fe3O4 and thinner composite adherend reduced the time to failure of the joints. Likewise, CFRP required a shorter time for debonding compared to GFRP due to its electromagnetic properties. Modifications with 2 and 5 wt.% Fe3O4 for CFRP and GFRP joints led to 31% and 37% time reduction which will be crucial for energy-saving when debonding large structures. Remarkably, sandblasting improved the electromagnetic induction capabilities of Ti-6Al-4 V, leading to a notable increase in the heating rate, which jumped from around 20°C/s to 80°C/s. Sandblasting enhanced the surface roughness of the adherends but only the water contact angle of GFRP decreased considerably. Fe3O4 modifications increased the epoxy residue on the Ti-6Al-4 V surface from 26% to 99%. DIC revealed the strain distribution of bulk materials to understand the thermomechanical mismatches between the materials and the adhesive joints exhibited high peel stresses at the overlap ends. The low weight content (2 and 5 wt.%) of Fe3O4 exhibited beneficial effects on the mechanical, thermal, thermomechanical, wettability and lap shear strength.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2256670","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the debonding on-demand (DoD) of adhesively bonded hybrid dissimilar joints by applying electromagnetic induction heating to the joint overlap section, wherein the epoxy resin is reinforced with iron oxide (Fe3O4) particles. Ti-6Al-4 V adherends were bonded with CFRP or GFRP adherends using neat/modified epoxy adhesive. DoD tests revealed that eddy current heating of Ti-6Al-4 V was a dominant heating mechanism of the joints while both eddy current and magnetic hysteresis of CFRP and Fe3O4 acted as a secondary heating factor. A low content Fe3O4 and thinner composite adherend reduced the time to failure of the joints. Likewise, CFRP required a shorter time for debonding compared to GFRP due to its electromagnetic properties. Modifications with 2 and 5 wt.% Fe3O4 for CFRP and GFRP joints led to 31% and 37% time reduction which will be crucial for energy-saving when debonding large structures. Remarkably, sandblasting improved the electromagnetic induction capabilities of Ti-6Al-4 V, leading to a notable increase in the heating rate, which jumped from around 20°C/s to 80°C/s. Sandblasting enhanced the surface roughness of the adherends but only the water contact angle of GFRP decreased considerably. Fe3O4 modifications increased the epoxy residue on the Ti-6Al-4 V surface from 26% to 99%. DIC revealed the strain distribution of bulk materials to understand the thermomechanical mismatches between the materials and the adhesive joints exhibited high peel stresses at the overlap ends. The low weight content (2 and 5 wt.%) of Fe3O4 exhibited beneficial effects on the mechanical, thermal, thermomechanical, wettability and lap shear strength.
期刊介绍:
The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.