High-temperature creep-induced site occupation evolution in the γ′ lattice in a Ru-bearing Ni-based superalloy

IF 8.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Letters Pub Date : 2023-09-13 DOI:10.1080/21663831.2023.2254910
Yunsong Zhao, Na Li, Li Wang, Junyang He, Weihong Liu, Min Song
{"title":"High-temperature creep-induced site occupation evolution in the γ′ lattice in a Ru-bearing Ni-based superalloy","authors":"Yunsong Zhao, Na Li, Li Wang, Junyang He, Weihong Liu, Min Song","doi":"10.1080/21663831.2023.2254910","DOIUrl":null,"url":null,"abstract":"By using state-of-the-art characterisation techniques including atom probe tomography and atomic resolved elemental mapping, we successfully probed the site occupation evolution associated with composition change in γ′, during 1100°C creep of a fourth generation Ru-bearing Ni-based superalloy. It is quantified that, W and Ru maintain unchanged site preference after creep rupture, while interestingly, the rest elements especially Co, Ta and Re show a weakened preference at both α- and β-sites in the γ′ lattice. This indicates the overall reduced γ′ ordering degree and thus the possible decrease in planar fault energies, which further facilitates dislocation shearing in γ′.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2254910","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By using state-of-the-art characterisation techniques including atom probe tomography and atomic resolved elemental mapping, we successfully probed the site occupation evolution associated with composition change in γ′, during 1100°C creep of a fourth generation Ru-bearing Ni-based superalloy. It is quantified that, W and Ru maintain unchanged site preference after creep rupture, while interestingly, the rest elements especially Co, Ta and Re show a weakened preference at both α- and β-sites in the γ′ lattice. This indicates the overall reduced γ′ ordering degree and thus the possible decrease in planar fault energies, which further facilitates dislocation shearing in γ′.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含ru镍基高温合金γ′晶格中高温蠕变诱导的占位演化
通过使用最先进的表征技术,包括原子探针断层扫描和原子分辨元素映射,我们成功地探测了第四代含钌镍基高温合金在1100℃蠕变过程中与γ′成分变化相关的位点占据演变。结果表明,W和Ru在蠕变破裂后仍保持不变的位置偏好,而Co、Ta和Re等元素在γ′晶格中α-和β-位置的偏好减弱。这表明γ′有序度总体降低,从而可能导致平面断层能降低,进一步促进了γ′位错剪切。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Letters
Materials Research Letters Materials Science-General Materials Science
CiteScore
12.10
自引率
3.60%
发文量
98
审稿时长
3.3 months
期刊介绍: Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.
期刊最新文献
Strain hardening mechanism induced by basal/pyramidal dislocation reactions in a 3D-printed high-strength titanium alloy Microtwinning mechanism revealed by its orientation dependence and tension-compression asymmetry in γ′ precipitate-strengthened Ni-based superalloys Enhancing strength and ductility in heterolamellar medium-Mn steel through bamboo-like microstructure design Microtwinning avalanches induced the Protevin–Le Châtelier effect in PWA1483 at 750 °C Superior strength-ductility synergy of an oxide-dispersion strengthened CoCrNi-based multi-principal element alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1